Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neurosci Lett ; 842: 137988, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288883

RESUMEN

This work probed into the role of latent transforming growth factor beta binding protein 2 (LTBP2) in intracranial aneurysm (IA). The rats underwent IA modeling and then stereotactic injection of short hairpin RNA against LTBP2 (shLTBP2). Hematoxylin-eosin (HE) staining was employed to assess IA model and vascular remodeling. Rat vascular smooth muscle cells (VSMCs) were transfected with shLTBP2, LTBP2 overexpression plasmid and fibroblast growth factor 2 (FGF2) overexpression plasmid. The mRNA and protein expressions of LTBP2, FGF2 and mitochondrial apoptosis-related factors (Caspase-3, Cyt-c, Mcl-1) were tested through qRT-PCR and Western blot. Cell viability, proliferation and apoptosis were examined by cell counting kit-8, EdU assay and flow cytometry. The up-regulated LTBP2 and down-regulated FGF2 were detected in IA rats. LTBP2 knockdown promoted vascular remodeling and Mcl-1 level, and restrained cell apoptosis and expressions of Caspase-3 and Cyt-c in IA model rats. Moreover, LTBP2 knockdown potentiated cell viability, proliferation and FGF2 level, and repressed apoptosis in rat VSMCs, while overexpressed LTBP2 exerted opposite effects. FGF2 overexpression promoted proliferation and Mcl-1 level, and inhibited apoptosis and expressions of Caspase-3 and Cyt-c in rat VSMCs, which also reversed the effects of overexpressed LTBP2 on these aspects. Collectively, LTBP2 down-regulates FGF2 to repress VSMCs proliferation and vascular remodeling in an IA rat model.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39289934

RESUMEN

BACKGROUND: To improve the prognosis outcome of lung cancer patients, more investigations are still needed. Previous reports have demonstrated the function of Ferulic Acid (FA) in lung cancer; thus, we have attempted to probe more molecular mechanisms underlying FA application in lung cancer. METHODS: CCK8 and colony formation experiments have been employed to explore cell viability and proliferation. Cell apoptosis was evaluated through flow cytometry. Cell morphology was observed with a microscope. MMP was assessed by JC-1 and LDH activity was evaluated by relative kit. Western blot assays were performed to examine the expression levels of GSDMD, GSDMD-N, caspase family proteins, and ROS/JNK/Bax mitochondrial apoptosis pathway downstream proteins. Flow cytometry analysis also measured the level of ROS. Tissues from animal models were taken for IHC analysis of C-caspase-1. RESULTS: FA was found to inhibit proliferation, change cell morphology, decrease MMP, and enhance LDH activity, suggesting its ability to induce pyroptosis of lung cancer cells. Both caspase-1 and GSDMD were found to be involved in the pyroptosis of lung cancer cells treated with FA, and caspase-1 mediated GSDMD. Moreover, FA was validated to regulate pyroptosis by ROS/JNK/Bax mitochondrial apoptosis pathway in vitro and in vivo. CONCLUSION: In summary, FA regulates GSDMD through ROS/JNK/Bax mitochondrial apoptosis pathway to induce pyroptosis in lung cancer cells, which may offer a theoretical basis for pyroptosis in the occurrence of lung cancer.

3.
Meat Sci ; 219: 109652, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39265386

RESUMEN

Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.

4.
Nutrients ; 16(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203920

RESUMEN

Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Janus Quinasa 2 , Mitocondrias , Rosa , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Femenino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama/patología , Transducción de Señal/efectos de los fármacos , Ratones , Humanos , Línea Celular Tumoral , Rosa/química , Proliferación Celular/efectos de los fármacos , Jugos de Frutas y Vegetales , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Cardiovasc Transl Res ; 17(4): 946-958, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38568407

RESUMEN

Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Hipotermia Inducida , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Ratas Sprague-Dawley , Animales , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , Transducción de Señal , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Células Cultivadas , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratas
6.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673741

RESUMEN

A widely used organophosphate flame retardant (OPFR), triphenyl phosphate (TPP), is frequently detected in various environmental media and humans. However, there is little known on the human corneal epithelium of health risk when exposed to TPP. In this study, human normal corneal epithelial cells (HCECs) were used to investigate the cell viability, morphology, apoptosis, and mitochondrial membrane potential after they were exposed to TPP, as well as their underlying molecular mechanisms. We found that TPP decreased cell viability in a concentration-dependent manner, with a half maximal inhibitory concentration (IC50) of 220 µM. Furthermore, TPP significantly induced HCEC apoptosis, decreased mitochondrial membrane potential in a dose-dependent manner, and changed the mRNA levels of the apoptosis biomarker genes (Cyt c, Caspase-9, Caspase-3, Bcl-2, and Bax). The results showed that TPP induced cytotoxicity in HCECs, eventually leading to apoptosis and changes in mitochondrial membrane potential. In addition, the caspase-dependent mitochondrial pathways may be involved in TPP-induced HCEC apoptosis. This study provides a reference for the human corneal toxicity of TPP, indicating that the risks of OPFR to human health cannot be ignored.


Asunto(s)
Apoptosis , Supervivencia Celular , Epitelio Corneal , Retardadores de Llama , Potencial de la Membrana Mitocondrial , Mitocondrias , Humanos , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Retardadores de Llama/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/citología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Caspasas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Organofosfatos/farmacología , Organofosfatos/toxicidad , Células Cultivadas
7.
Food Chem Toxicol ; 185: 114506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331085

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a frequently detected organophosphorus flame retardants (OPFRs) in various environmental media, and has been evidenced as reproductive toxicity. However, its adverse effects on spermatogenic cells are unknown. In this study, mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model, and the impact of mitochondrial structure and function, endoplasmic reticulum (ER) stress, cell apoptosis and the related molecular mechanisms were investigated. Our study indicated that cell viability was decreased significantly in a dose-dependent manner after TDCIPP treatment with the half lethal concentration (LC50) at 82.8 µM, 50.0 µM and 39.6 µM for 24 h, 48 h and 72 h, respectively. An apoptosis was observed by Annexin V-FITC/PI stain. In addition, fragmentation of mitochondrial structure, an increase of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, release of cytochrome c and activation of Caspase-3 and Caspase-9 activity implicated that Caspase-3 dependent mitochondrial pathway might play a key role in the process of GC-2 cell apoptosis. Furthermore, ER stress induction was convinced by altered morphology of ER and up-regulation of ER targeting genes, including (Bip, eIF2α, ATF4, XBP1, CHOP, ATF6 and Caspase-12). Taken together, these results demonstrate that both mitochondrial apoptotic pathways and ER stress apoptotic pathways might play important roles in the process of apoptosis in GC-2 cells induced by TDCIPP treatment. Therefore, the potential reproductive toxicity of TDCIPP should not be ignored.


Asunto(s)
Organofosfatos , Fosfatos , Espermatocitos , Masculino , Ratones , Animales , Fosfatos/farmacología , Caspasa 3/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico
8.
Chem Biol Interact ; 387: 110795, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956922

RESUMEN

In order to search for novel antitumor drugs with high efficiency and low toxicity, the anti-lung cancer activity of phytosphingosine was studied. Phytosphingosine is widely distributed in fungi, plants, animals, and has several biological activities, including anti-inflammation and anti-tumor. However, its anti-lung cancer activity needs to be further investigated. The effects and pharmacological mechanisms of phytosphingosine on lung cancer treatment were investigated both in vitro and in vivo. The results showed that phytosphingosine inhibited the growth of lung cancer cell lines. Phytosphingosine induced apoptosis through a mitochondria-mediated pathway, phytosphingosine arrested the cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner by increasing Bax/Bcl-2 ratio, which caused the decrease of mitochondrial membrane potential to promote the release of cytochrome C, caspase 9 and 3, and degrade PARP in A549 cells. The results showed that phytosphingosine could damage the mitochondrial functions, increase ROS levels, and arrest the cell cycle at the G2/M stages. Finally, phytosphingosine also inhibited the growth of tumor in mice. Taken together, phytosphingosine suppressed the growth of lung cancer cells both in vitro and in vivo and had potential application in the research and development of antitumor drugs. The aim of the present study was to explain the theoretical basis of phytosphingosine therapy for lung cancer and providing new possibilities for lung cancer treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos , Neoplasias Pulmonares , Animales , Ratones , Apoptosis , Muerte Celular , Mitocondrias , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Mitosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1039142

RESUMEN

Objective To investigate the effect of folic acid–modified liposome quercetin (FLQ) on the proliferation and apoptosis of triple negative breast cancer (TNBC) cells and explore its underlying mechanism. Methods CCK-8 was used to detect the effect of FLQ on TNBC cell viability. Colony formation assay was conducted to detect the effect of FLQ on TNBC cell proliferation. Flow cytometry was performed to detect the effect of FLQ on TNBC cell apoptosis, the levels of intracellular ROS, and mitochondrial membrane potential. Western blot analysis was conducted to detect the expression levels of JAK2/STAT3 signaling pathway-related and apoptosis-related proteins. Results FLQ inhibited the proliferation and promoted the apoptosis of MDA-MB-231 cells (P=0.023, P<0.001). It promoted mitochondrial membrane potential collapse and increased the intracellular ROS levels of MDA-MB-231 cells (P=0.003, P=0.034); inhibited the phosphorylation levels of JAK2 and STAT3; upregulated the expression levels of the proapoptotic proteins Bax, Bak, cytochrome C, and Cleaved-Caspase-3 (P<0.001, P<0.001); and downregulated the expression levels of the antiapoptotic proteins Bcl2 and Bcl-xL (P=0.037, 0.028). Conclusion FLQ inhibits the proliferation and induces the apoptosis of MDA-MB-231 cells. These effects may be related to the activation of the mitochondrial apoptosis pathway through the inhibition of the JAK2/STAT3 signaling pathway.

10.
Biomed Pharmacother ; 168: 115784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879215

RESUMEN

Triple-negative breast cancer (TNBC), as the most aggressive subtype of breast cancer, presents a scarcity of miraculous drugs in suppressing its proliferation and metastasis. Bruceine A (BA) is a functional group-rich quassin compound with extensive and distinctive pharmacological activities. Within the present study, we investigated the capabilities of BA in suppressing TNBC proliferation and metastasis as well as its potential mechanisms. The results displayed that BA dramatically repressed the proliferation of MDA-MB-231 and 4T1 cells with corresponding IC50 values of 78.4 nM and 524.6 nM, respectively. Concurrently, BA arrested cells in G1 phase by downregulating cycle-related proteins Cyclin D1 and CDK4. Furthermore, BA distinctly induced mitochondrial dysfunction as manifested by diminished mitochondrial membrane potential, elevated reactive oxygen species generation, minimized ATP production, and Caspase-dependent activation of the mitochondrial apoptosis pathway. Additionally, BA restrained the invasion and metastasis of TNBC cells by repressing MMP9 and MMP2 expression. Intriguingly, after pretreatment with MEK activator C16-PAF, the inhibitory effect of BA on MEK/ERK pathway was notably diminished, while the proliferation suppression and metastasis repression exerted by BA were all strikingly curtailed. Molecular docking illustrated that BA potently combined with residues on the MEK1 protein with the presence of diverse intermolecular interactions. Ultimately, BA effectively suppressed tumor growth in the 4T1 xenograft tumor model with no detectable visceral toxicity in the high-dose group and, astonishingly, repressed tumor metastasis in the 4T1-luc lung metastasis model. Collectively, our study demonstrates that BA is a promising chemotherapeutic agent for treating TNBC and suppressing lung metastasis.


Asunto(s)
Neoplasias Pulmonares , Cuassinas , Neoplasias de la Mama Triple Negativas , Humanos , Sistema de Señalización de MAP Quinasas , Proliferación Celular , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Apoptosis , Cuassinas/farmacología , Mitocondrias , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
11.
Eur J Haematol ; 111(2): 279-292, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343956

RESUMEN

BACKGROUND: Acute T lymphoblastic leukemia (T-ALL) occurs in 25% of adults diagnosed with Acute lymphocytic leukemia (ALL), and drug resistance is still a clinical obstacle. Augmenter of liver regeneration (ALR) is important to ALL drug resistance and is involved in the regulation of mitochondrial function; we speculated that the high expression of ALR in T-ALL promotes drug resistance through the alteration of mitochondrial function and the inhibition of the mitochondrial apoptosis pathway. METHOD: We silenced and overexpressed ALR in the T-ALL cell lines that were untreated or treated with dexamethasone (DXM) or methotrexate (MTX). Apoptosis, proliferation, reactive oxygen species and ATP productions, mitochondrial membrane potential, and mitochondrial respiratory chain complex expression in cells were examined. The data were collated to comprehensively evaluate the effects of ALR expression change on mitochondrial function and drug resistance in T-ALL cells. RESULTS: ALR knockdown led to the inhibition of proliferation, an increase in apoptosis, and the promotion of the cells' sensitivity to drugs. It also showed mitochondrial dysfunction. ALR knockdown actived the mitochondrial apoptosis pathway. The treatment of ALR knockdown T-ALL cells with MTX or DXM further altered the mitochondrial function of T-ALL cells and actived the mitochondrial apoptosis pathway. Overexpression of ALR promoted cell proliferation and drug resistance, reduced apoptosis, protected mitochondrial function, and inhibited the mitochondrial apoptosis pathway. CONCLUSION: T-ALL resistance caused by ALR through the alteration of mitochondrial function is associated with the inhibition of the mitochondrial apoptosis pathway.


Asunto(s)
Regeneración Hepática , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Regeneración Hepática/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Apoptosis , Resistencia a Medicamentos
12.
Poult Sci ; 102(4): 102533, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36848756

RESUMEN

Duck circovirus genotype 2 (DuCV2) belongs to the genus Circovirus, family Circoviridae. It can generally cause lymphocyte atrophy and necrosis in ducks, which leads to immunosuppression. The function of the DuCV2 open reading frame 3 (ORF3) protein in viral pathogenesis in host cells remains unclear. Therefore, a series of studies based on ORF3 of the isolate DuCV GH01 strain (belonging to DuCV2) were carried out in duck embryo fibroblasts (DEFs) in this study. The results showed that the ORF3 protein could induce nuclear shrinkage and fragmentation in DEFs. Chromosomal DNA breakage was observed by TUNEL assay. The expression levels of caspase-related genes showed that ORF3 primarily promoted caspase 3 and caspase 9 expression. Furthermore, the protein expression levels of cleaved caspase 3 and cleaved caspase 9 in DEFs were enhanced by ORF3. Thus, ORF3 may activate the mitochondrial apoptosis pathway. When the 20 amino acid residues at the C-terminus of ORF3 (ORF3ΔC20) were deleted, the apoptosis rates were decreased. Moreover, compared to ORF3, ORF3ΔC20 downregulated the mRNA levels of cytochrome c (Cyt c), poly ADP-ribose polymerase (PARP) and apoptosis protease activating factor 1 (Apaf-1), which are the key molecules in the mitochondrial apoptotic pathway. Further study showed that ORF3ΔC20 could reduce the mitochondrial membrane potential (MMP). This study suggested that the DuCV2 ORF3 protein may primarily activate apoptosis through the mitochondrial pathway in DEFs, and this function is ORF3 C20 dependent.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Animales , Circovirus/genética , Caspasa 3 , Caspasa 9/genética , Sistemas de Lectura Abierta , Pollos/genética , Apoptosis/genética , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/patología , Genotipo
13.
Food Sci Nutr ; 11(2): 733-742, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789059

RESUMEN

Liver injury refers to the damage of liver function, which will seriously harm the body's health if it is not prevented and treated in time. Sporadic researches have reported that ingestion of DNA has a hepatoprotective effect, but its effect and mechanism were not clarified. The purpose of this study was to explore the preventive effect and mechanism of salmon sperm DNA on acute liver injury in mice induced by carbon tetrachloride (CCl4). Six-week-old ICR (Institute of Cancer Research) male mice were used to establish a liver injury model by injecting with 4% CCl4, silymarin, and three different concentrations of DNA solutions were given to mice by gavage for 14 days. The histological and pathological changes in the liver were observed. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and the levels of oxidative and antioxidant markers such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) in liver tissue were determined. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA), and hepatic oxidative stress and apoptosis-related markers were determined by western blotting. The results showed that compared with the model group, the DNA test group significantly improved the liver pathological changes and the level of liver function, regulated liver oxidative stress, reduced hepatocyte apoptosis, and decreased the levels of inflammatory factors such as TNF-α and IL-6. Compared with the silymarin group, the high dose of DNA was even more effective in preventing liver injury. In conclusion, salmon sperm DNA has a potential protective effect against acute liver injury induced by CCl4, which is achieved by regulating the Nrf2/ARE (nuclear factor erythroid 2 (NF-E2)-related factor 2/antioxidant responsive element) oxidative stress pathway and mitochondrial apoptosis pathway.

14.
Bioeng Transl Med ; 8(1): e10366, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684093

RESUMEN

Rheumatoid arthritis (RA) has plagued physicians and patients for years due to the lack of targeted treatment. In this study, inspired by the commonality between rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and cancer cells, the therapeutic effects of cold air plasma (CAP) on RA are studied systematically and thoroughly. In/ex vivo results show that CAP with the proper dosage significantly relieves symptoms including synovial hyperplasia, inflammatory infiltration, and angiogenesis and eliminates the root cause by triggering the self-antioxidant capability of the surrounding tissue. The mechanism on the molecular and cellular level is also revealed that the spontaneous reactive oxygen species (ROS) cascade induces the mitochondrial apoptosis pathway on RA-FLS. This study reveals a new strategy for targeted treatment of RA and the mechanistic study provides the theoretical foundation for future development of plasma medicine.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-996503

RESUMEN

ObjectiveTo investigate the effect and mechanism of Yiyi Fuzi Baijiangsan (YYFZBJ) on the apoptosis of colon cancer cell line HCT116. MethodYYFZBJ at different concentrations (0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16 g·L-1) was used to intervene in HCT116 cells for 24, 48, 72 h. The cell counting kit-8 (CCK-8) method was used to determine the effect of YYFZBJ on cell proliferation in vitro. The cells were divided into a blank group, a capecitabine group(1.8 g·L-1), and low-, medium-, and high-dose YYFZBJ groups (6, 10, and 14 g·L-1) and treated for 48 hours. Flow cytometry was used to detect the apoptosis. Hoechst 33342 staining was used to observe the apoptotic morphology of cells. Mitochondrial membrane potential (MMP) was analyzed by a mitochondrial-targeted deep-red fluorescent probe (Mito-Tracker Red CMXRos). The expression of proteins related to the mitochondrial apoptosis pathway, such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cytochrome C (Cyt C), cysteinyl aspartate-specific protease (Caspase)-9, Caspase-3, cleaved Caspase-9, and cleaved Caspase-3 was detected by Western blot. The mRNA levels of Bcl-2, Bax, Cyt C, Caspase-9, and Caspase-3 were determined by real-time polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, YYFZBJ (8, 10, 12, 14, 16 g·L-1) significantly inhibited the proliferation of HCT116 cells in vitro (P<0.05) in a dose-dependent manner. Compared with the blank group, the medium- and high-dose YYFZBJ groups and the capecitabine group showed increased apoptosis rates of colon cancer cells (P<0.05). The YYFZBJ groups and the capecitabine group showed reduced number of colon cancer cells with significantly changed cellular morphology and cell apoptosis manifestations, such as strong dark blue fluorescence, nucleus concentration, shrinkage, and fragmentation. With the increase in the mass concentration of YYFZBJ, the blue fluorescence intensity was significantly enhanced. Compared with the blank group, the YYFZBJ groups and the capecitabine group showed reduced MMP in a dose-dependent manner, decreased protein and mRNA levels of Bcl-2, and increased protein expression of Bax, Cyt C, Caspase-9, Caspase-3, cleaved Caspase-9, and cleaved Caspase-3 and mRNA expression of Bax, Cyt C, Caspase-9, and Caspase-3 (P<0.05). ConclusionYYFZBJ can induce the apoptosis of colon cancer HCT116 cells through the mitochondrial apoptosis pathway.

16.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36145281

RESUMEN

The aggressive triple-negative breast cancer (TNBC) is a challenging disease due to the absence of tailored therapy. The search for new therapies involves intensive research focusing on natural sources. Achillea fragrantissima (A. fragrantissima) is a traditional medicine from the Middle East region. Various solvent extracts from different A. fragrantissima plant parts, including flowers, leaves, and roots, were tested on TNBC MDA-MB-231 cells. Using liquid chromatography, the fingerprinting revealed rich and diverse compositions for A. fragrantissima plant parts using polar to non-polar solvent extracts indicating possible differences in bioactivities. Using the CellTiter-Glo™ viability assay, the half-maximal inhibitory concentration (IC50) values were determined for each extract and ranged from 32.4 to 161.7 µg/mL. The A. fragrantissima flower dichloromethane extract had the lowest mean IC50 value and was chosen for further investigation. Upon treatment with increasing A. fragrantissima flower dichloromethane extract concentrations, the MDA-MB-231 cells displayed, in a dose-dependent manner, enhanced morphological and biochemical hallmarks of apoptosis, including cell shrinkage, phosphatidylserine exposure, caspase activity, and mitochondrial outer membrane permeabilization, assessed using phase-contrast microscopy, fluorescence-activated single-cell sorting analysis, Image-iT™ live caspase, and mitochondrial transition pore opening activity, respectively. Anticancer target prediction and molecular docking studies revealed the inhibitory activity of a few A. fragrantissima flower dichloromethane extract-derived metabolites against carbonic anhydrase IX, an enzyme reported for its anti-apoptotic properties. In conclusion, these findings suggest promising therapeutic values of the A. fragrantissima flower dichloromethane extract against TNBC development.

17.
J Biochem Mol Toxicol ; 36(10): e23157, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35833306

RESUMEN

Farrerol is an herbal compound extracted from rhododendron. Here, our study is to investigate biological effects of farrerol on lung adenocarcinoma (LAC) cells. Human LAC cell lines and xenograft mouse model were utilized to define the effects of farrerol on tumor growth. Our findings indicated that farrerol significantly reduced LAC cell viability as well as the colony-forming capacity. Flow cytometry analysis demonstrated that farrerol contributed to cell apoptosis and G0/G1 phase cell cycle arrest. Mechanistically, farrerol treatment upregulated proapoptotic molecules (Bak, Bid, cleaved caspase-3 and cleaved caspase-9) and senescence markers (p16 and p2), but downregulated antiapoptosis genes (Bcl-2 and Bcl-XL) and cell cycle-associated genes (CyclinD1 and CDK4); meanwhile, the phosphorylation of retinoblastoma (Rb) protein was attenuated upon pretreatment of LAC cells with farrerol in comparison to untreated control. Further studies indicated that farrerol elevated reactive oxygen species levels, activating mitochondrial apoptotic pathway and causing cell apoptosis. However, exposure to farrerol did not result in significant apoptosis in normal lung epithelial cells, suggesting a tumor-specific effect of farrerol on LAC cells. In animal model, farrerol showed a significant inhibitory effect on LAC xenograft tumor growth. And gene expressions in tumor tissues, as mentioned above, were in line with the in vitro results. Taken together, these results suggested that farrerol caused LAC cell apoptosis by activating mitochondrial apoptotic pathway, whereas farrerol treatment had no notable effect on normal lung epithelial cells. Farrerol might be an effective therapeutic drug for LAC.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cromonas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566295

RESUMEN

This study aimed to investigate the inhibitory effects and mechanism of diaporthein B (DTB), a natural compound extracted from the fungus Penicillium sclerotiorum GZU-XW03-2, on human colon cancer cells. The inhibitory effect of DTB at different concentrations on the proliferation of colon cancer cells HCT116 and LOVO was detected at 24 and 48 h. The effect of cell migration and clone formation ability were detected by cell scratch and plate cloning experiments. Morphological changes were observed by Hoechst 33342 and Annexin-V/PI staining, and flow cytometry was used to detect the proportion of apoptotic cells. DTB significantly inhibited colon cancer cell proliferation, migration, and apoptosis in a dose-dependent manner without significant effects on normal colonic epithelial cells NCM460. The IC50 inhibition effect can be achieved after treatment with 3 µmol/L DTB for 24 h. Compared with the blank group, the migration and clonal-forming ability of colon cancer cells in the DTB group was significantly decreased (p < 0.01), while the apoptotic cells were significantly increased (p < 0.01) in a concentration-dependent manner. DTB can inhibit the proliferation and migration of human colon cancer cells HCT116 and LOVO and promote the apoptosis of human colon cancer cells.


Asunto(s)
Neoplasias del Colon , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Diterpenos , Hongos , Células HCT116 , Humanos
19.
Front Immunol ; 13: 1053754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713420

RESUMEN

Background: Acute kidney injury is a common and severe complication of sepsis. Sepsis -induced acute kidney injury(S-AKI) is an independent risk factor for mortality among sepsis patients. However, the mechanisms of S-AKI are complex and poorly understand. Therefore, exploring the underlying mechanisms of S-AKI may lead to the development of therapeutic targets. Method: A model of S-AKI was established in male C57BL/6 mice using cecal ligation and puncture (CLP). The data-independent acquisition (DIA)-mass spectrometry-based proteomics was used to explore the protein expression changes and analyze the key proteomics profile in control and CLP group. The methodology was also used to identify the key proteins and pathways. S-AKI in vitro was established by treating the HK-2 cells with lipopolysaccharide (LPS). Subsequently, the effect and mechanism of Cathepsin B (CTSB) in inducing apoptosis in HK-2 cells were observed and verified. Results: The renal injury scores, serum creatinine, blood urea nitrogen, and kidney injury molecule 1 were higher in septic mice than in non-septic mice. The proteomic analysis identified a total of 449 differentially expressed proteins (DEPs). GO and KEGG analysis showed that DEPs were mostly enriched in lysosomal-related cell structures and pathways. CTSB and MAPK were identified as key proteins in S-AKI. Electron microscopy observed enlarged lysosomes, swelled and ruptured mitochondria, and cytoplasmic vacuolization in CLP group. TUNEL staining and CTSB activity test showed that the apoptosis and CTSB activity were higher in CLP group than in control group. In HK-2 cell injury model, the CTSB activity and mRNA expression were increased in LPS-treated cells. Acridine orange staining showed that LPS caused lysosomal membrane permeabilization (LMP). CA074 as an inhibitor of CTSB could effectively inhibit CTSB activity. CCK8 and Annexin V/PI staining results indicated that CA074 reversed LPS-induced apoptosis of HK-2 cells. The JC-1 and western blot results showed that LPS inhibited mitochondrial membrane potential and activated mitochondrial apoptosis pathway, which could be reversed by CA074. Conclusions: LMP and CTSB contribute to pathogenesis of S-AKI. LPS treatment induced HK-2 cell injury by activating mitochondrial apoptosis pathway. Inhibition of CTSB might be a new therapeutic strategy to alleviate sepsis-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Masculino , Ratones , Lesión Renal Aguda/metabolismo , Apoptosis , Catepsina B/farmacología , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteómica , Sepsis/metabolismo , Humanos , Línea Celular
20.
Acta Pharmacol Sin ; 43(8): 1970-1978, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34931018

RESUMEN

Cx43 is the major connexin in ventricular gap junctions, and plays a pivotal role in control of electrical and metabolic communication among adjacent cardiomyocytes. We previously found that Cx43 dephosphorylation at serine 282 (pS282) caused cardiomyocyte apoptosis, which is involved in cardiac ischemia/reperfusion injury. In this study we investigated whether Cx43-S282 hyper-phosphorylation could protect cardiomyocytes against apoptosis. Adenovirus carrying rat full length Cx43 gene (Cx43-wt) or a mutant gene at S282 substituted with aspartic acid (S282D) were transfected into neonatal rat ventricular myocytes (NRVMs) or injected into rat ventricular wall. Rat abdominal aorta constriction model (AAC) was used to assess Cx43-S282 phosphorylation status. We showed that Cx43 phosphorylation at S282 was increased over 2-times compared to Cx43-wt cells at 24 h after transfection, while pS262 and pS368 were unaltered. S282D-transfected cells displayed enhanced gap junctional communication, and increased basal intracellular Ca2+ concentration and spontaneous Ca2+ transients compared to Cx43-wt cells. However, spontaneous apoptosis appeared in NRVMs transfected with S282D for 34 h. Rat ventricular myocardium transfected with S282D in vivo also exhibited apoptotic responses, including increased Bax/Bcl-xL ratio, cytochrome c release as well as caspase-3 and caspase-9 activities, while factor-associated suicide (Fas)/Fas-associated death domain expression and caspase-8 activity remained unaltered. In addition, AAC-induced hypertrophic ventricles had apoptotic injury with Cx43-S282 hyper-phosphorylation compared with Sham ventricles. In conclusion, Cx43 hyper-phosphorylation at S282, as dephosphorylation, also triggers cardiomyocyte apoptosis, but through activation of mitochondrial apoptosis pathway, providing a fine-tuned Cx43-S282 phosphorylation range required for the maintenance of cardiomyocyte function and survival.


Asunto(s)
Apoptosis , Conexina 43 , Miocitos Cardíacos , Animales , Conexina 43/genética , Conexina 43/metabolismo , Mitocondrias , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA