Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Cardiovasc Toxicol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158829

RESUMEN

Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.

2.
Front Pharmacol ; 15: 1387866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104398

RESUMEN

Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.

3.
Anim Biosci ; 37(10): 1692-1701, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39139081

RESUMEN

OBJECTIVE: This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach. METHODS: M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 µg/g; n = 5) and high-carnosine (HC, 4,212.5 ±82.88 µg/g; n = 5). RESULTS: We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (p<0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, protein disulfide isomerase family A, member 6, and endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (false discovery rate<0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction. These consequences improve meat characteristics, which were confirmed by the principal component analysis. CONCLUSION: Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach.

4.
Cell Signal ; 122: 111343, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127136

RESUMEN

Glaucoma, a leading cause of blindness worldwide, encompasses a group of pathological conditions affecting the optic nerve and is characterized by progressive retinal ganglion cell loss, cupping of the optic nerve head, and distinct visual field defects. While elevated intraocular pressure (IOP) is the main risk factor for glaucoma, many patients do not have elevated IOP. Consequently, other risk factors, such as ocular blood flow abnormalities and immunological factors, have been implicated in its pathophysiology. Traditional therapeutic strategies primarily aim to reduce IOP, but there is growing interest in developing novel treatment approaches to improve disease management and reduce the high rates of severe visual impairment. In this context, targeting the ocular renin-angiotensin-aldosterone system (RAAS) has been found as a potential curative strategy. The RAAS contributes to glaucoma development through key effectors such as prorenin, angiotensin II, and aldosterone. Recent evidence has highlighted the potential of using RAAS modulators to combat glaucoma, yielding encouraging results. Our study aims to explore the molecular pathways linking the ocular RAAS and glaucoma, summarizing recent advances that elucidate the role of the RAAS in triggering oxidative stress, inflammation, and remodelling in the pathogenesis of glaucoma. Additionally, we will present emerging therapeutic approaches that utilize RAAS modulators and antioxidants to slow the progression of glaucoma.


Asunto(s)
Glaucoma , Sistema Renina-Angiotensina , Animales , Humanos , Glaucoma/metabolismo , Glaucoma/terapia , Presión Intraocular , Estrés Oxidativo , Transducción de Señal , Aldosterona/metabolismo
5.
Sci Rep ; 14(1): 17097, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048611

RESUMEN

GNAO1 encodes G protein subunit alpha O1 (Gαo). Pathogenic variations in GNAO1 cause developmental delay, intractable seizures, and progressive involuntary movements from early infancy. Because the functional role of GNAO1 in the developing brain remains unclear, therapeutic strategies are still unestablished for patients presenting with GNAO1-associated encephalopathy. We herein report that siRNA-mediated depletion of Gnao1 perturbs the expression of transcripts associated with Rho GTPase signaling in Neuro2a cells. Consistently, siRNA treatment hampered neurite outgrowth and extension. Growth cone formation was markedly disrupted in monolayer neurons differentiated from iPSCs from a patient with a pathogenic variant of Gαo (p.G203R). This variant disabled neuro-spherical assembly, acquisition of the organized structure, and polarized signals of phospho-MLC2 in cortical organoids from the patient's iPSCs. We confirmed that the Rho kinase inhibitor Y27632 restored these morphological phenotypes. Thus, Gαo determines the self-organizing process of the developing brain by regulating the Rho-associated pathway. These data suggest that Rho GTPase pathway might be an alternative target of therapy for patients with GNAO1-associated encephalopathy.


Asunto(s)
Diferenciación Celular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Células Madre Pluripotentes Inducidas , Neuronas , Transducción de Señal , Proteínas de Unión al GTP rho , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Neuronas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Ratones , Animales , Quinasas Asociadas a rho/metabolismo , Organoides/metabolismo , Amidas/farmacología , Piridinas
6.
Clin Exp Immunol ; 217(3): 291-299, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38916251

RESUMEN

The clinical spectrum of Down syndrome (DS) ranges from congenital malformations to premature aging and early-onset senescence. Excessive immunoreactivity and oxidative stress are thought to accelerate the pace of aging in DS patients; however, the immunological profile remains elusive. We investigated whether peripheral blood monocyte-derived dendritic cells (MoDCs) in DS patients respond to lipopolysaccharide (LPS) distinctly from non-DS control MoDCs. Eighteen DS patients (age 2-47 years, 12 males) and 22 controls (age 4-40 years, 15 males) were enrolled. CD14-positive monocytes were immunopurified and cultured for 7 days in the presence of granulocyte-macrophage colony-stimulating factor and IL-4, yielding MoDCs in vitro. After the LPS-stimulation for 48 hours from days 7 to 9, culture supernatant cytokines were measured by multiplex cytokine bead assays, and bulk-prepared RNA from the cells was used for transcriptomic analyses. MoDCs from DS patients produced cytokines/chemokines (IL-6, IL-8, TNF-α, MCP-1, and IP-10) at significantly higher levels than those from controls in response to LPS. RNA sequencing revealed that DS-derived MoDCs differentially expressed 137 genes (74 upregulated and 63 downregulated) compared with controls. A gene enrichment analysis identified 5 genes associated with Toll-like receptor signaling (KEGG: hsa04620, P = 0.00731) and oxidative phosphorylation (hsa00190, P = 0.0173) pathways. MoDCs obtained from DS patients showed higher cytokine or chemokine responses to LPS than did control MoDCs. Gene expression profiles suggest that hyperactive Toll-like receptor and mitochondrial oxidative phosphorylation pathways configure the immunoreactive signature of MoDCs in DS patients.


Asunto(s)
Citocinas , Células Dendríticas , Síndrome de Down , Lipopolisacáridos , Monocitos , Humanos , Síndrome de Down/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Masculino , Femenino , Adolescente , Adulto , Niño , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Monocitos/inmunología , Monocitos/metabolismo , Preescolar , Persona de Mediana Edad , Citocinas/metabolismo , Adulto Joven , Células Cultivadas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38878077

RESUMEN

Suicide is a leading cause of death worldwide. Suicide ideation (SI) is a known risk factor for suicide behaviour (SB). The current psychobiology and genetic predisposition to SI and SB are poorly defined. Despite convincing relevance of a genetic background for SI, there is no current implementable knowledge about the genetic makeup that identifies subjects at risk for it. One of the possible reasons for the absence of a clear-cut evidence is the polygenetic nature of SI along with the very large sample sizes that are needed to observe significant genetic association result. The CATIE sample was instrumental to the analysis. SI was retrieved as measured by the Calgary test. Clinical possible covariates were identified by a nested regression model. A principal component analysis helped in defining the possible genetic stratification factors. A GWAS analysis, polygenic risk score associated with a random forest analysis and a molecular pathway analysis were undertaken to identify the genetic contribution to SI. As a result, 741 Schizophrenic individuals from the CATIE were available for the genetic analysis, including 166,325 SNPs after quality control and pruning. No GWAS significant result was found. The random forest analysis conducted by combining the polygenic risk score and several clinical variables resulted in a possibly overfitting model (OOB error rate < 1%). The molecular pathway analysis revealed several molecular pathways possibly involved in SI, of which those involved in microglia functioning were of particular interest. A medium-small sample of SKZ individuals was analyzed to shed a light on the genetic of SI. As an expected result from the underpowered sample, no GWAS positive result was retrieved, but the molecular pathway analysis indicated a possible role of microglia and neurodevelopment in SI.

8.
Cancer Control ; 31: 10732748241251571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869038

RESUMEN

OBJECTIVES: To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS: Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS: Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION: Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.


ObjectivesInvestigating the dysregulated signaling pathways of head and neck squamous cell carcinoma (HNSCC) linked with circulating tumor cells (CTCs) using single-cell molecular characterization.IntroductionHNSCC poses a significant global health burden with poor survival rates despite advancements in treatment. Metastatic activity from treatment-resistant cancer cells remains a major challenge in developing effective treatments. However, the molecular profiles of cancer cells, particularly CTCs, are not well-understood.MethodsWe analyzed in-situ HNSCC tumors and corresponding CTCs using surrogate biomarkers to detect metastasis, a technique not widely used in HNSCC treatment protocols.ResultsOur study revealed complex CTCs in metastatic HNSCC patients characterized by gene expression and mutational gene profiling via single-cell RNASeq (scRNASeq). These profiles confirmed molecular pathways inherent in CTCs, further validated by previous research.ConclusionThrough our research, we identified five dysregulated signaling pathways in CTCs, suggesting potential biomarker panels for HNSCC screening in situ tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Neoplásicas Circulantes , Transducción de Señal , Análisis de la Célula Individual , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/metabolismo , Análisis de la Célula Individual/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Masculino , Femenino , Perfilación de la Expresión Génica/métodos , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
9.
Front Oncol ; 14: 1393599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779081

RESUMEN

Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.

10.
J Chemother ; : 1-18, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711347

RESUMEN

Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1ß, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.

12.
J Pers Med ; 14(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793045

RESUMEN

Pancreatic cancer is one of the most aggressive, heterogeneous, and fatal types of human cancer; therefore, more effective therapeutic drugs are urgently needed. Human epidermal growth factor receptor 2 (HER2) overexpression and amplification have been identified as a cornerstone in this pathology. The aim of this review is to identify HER2 membrane overexpression in relation to pancreatic cancer pathways that can be used in order to develop a targeted therapy. After searching the keywords, 174 articles were found during a time span of 10 years, between 2013 and 2023, but only twelve scientific papers were qualified for this investigation. The new era of biomolecular research found a significant relationship between HER2 overexpression and pancreatic cancer cells in 25-30% of cases. The variables are dependent on tumor-derived cells, with differences in receptor overexpression between PDAC (pancreatic ductal adenocarcinoma), BTC (biliary tract cancer), ampullary carcinoma, and PNETs (pancreatic neuroendocrine tumors). HER2 overexpression is frequently encountered in human pancreatic carcinoma cell lines, and the ERBB family is one of the targets in the near future of therapy, with good results in phase I, II, and III studies evaluating downregulation and tumor downstaging, respectively.

13.
Phytomedicine ; 129: 155638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728916

RESUMEN

BACKGROUND: Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES: The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN: An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS: Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS: Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION: This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.


Asunto(s)
Diabetes Mellitus , Hipoglucemiantes , Terpenos , Humanos , Terpenos/farmacología , Terpenos/uso terapéutico , Animales , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fitoterapia , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
14.
Mol Biol Rep ; 51(1): 695, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796674

RESUMEN

Traumatic brain injury (TBI) is a leading cause of disability worldwide, with an estimated annual incidence of 27-69 million. TBI is a severe condition that can lead to high mortality rates and long-term cognitive, behavioral, and physical impairments in young adults. It is a significant public health concern due to the lack of effective treatments available. Quercetin, a natural flavonoid found in various fruits and vegetables, has demonstrated therapeutic potential with anti-inflammatory, antioxidant, and neuroprotective properties. Recently, some evidence has accentuated the ameliorating effects of quercetin on TBI. This review discusses quercetin's ability to reduce TBI-related damage by regulating many cellular and molecular pathways. Quercetin in vitro and in vivo studies exhibit promise in reducing inflammation, oxidative stress, apoptosis, and enhancing cognitive function post-TBI. Further clinical investigation into quercetin's therapeutic potential as a readily available adjuvant in the treatment of TBI is warranted in light of these findings. This review adds to our knowledge of quercetin's potential in treating TBI by clarifying its mechanisms of action.


Asunto(s)
Antioxidantes , Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Estrés Oxidativo , Quercetina , Quercetina/farmacología , Quercetina/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
15.
Front Immunol ; 15: 1339647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660311

RESUMEN

Introduction: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD. Methods: Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects. Results: 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD. Discussion: Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.


Asunto(s)
Endometriosis , Enfermedades Inflamatorias del Intestino , Mapas de Interacción de Proteínas , Transcriptoma , Humanos , Endometriosis/inmunología , Endometriosis/genética , Femenino , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Biología Computacional/métodos , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Redes Reguladoras de Genes , Biomarcadores , Regulación de la Expresión Génica
16.
Curr Pharm Des ; 30(19): 1472-1489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638052

RESUMEN

BACKGROUND: Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.


Asunto(s)
Ataxia de Friedreich , Proteínas de Unión a Hierro , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Unión a Hierro/metabolismo , Frataxina , Animales
17.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606516

RESUMEN

Muscular atrophy, which results in loss of muscle mass and strength, is a significant concern for patients with various diseases. It is crucial to comprehend the molecular mechanisms underlying this condition to devise targeted treatments. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, serving vital roles in numerous cellular processes, including the maintenance of muscle stability. An intricate network of miRNAs finely regulates gene expression, influencing pathways related to muscle protein production, and muscle breakdown and regeneration. Dysregulation of specific miRNAs has been linked to the development of muscular atrophy, affecting important signaling pathways including the protein kinase B/mTOR and ubiquitin­proteasome systems. The present review summarizes recent work on miRNA patterns associated with muscular atrophy under various physiological and pathological conditions, elucidating its intricate regulatory networks. In conclusion, the present review lays a foundation for the development of novel treatment options for individuals affected by muscular atrophy, and explores other regulatory pathways, such as autophagy and inflammatory signaling, to ensure a comprehensive overview of the multifarious nature of muscular atrophy. The objective of the present review was to elucidate the complex molecular pathways involved in muscular atrophy, and to facilitate the development of innovative and specific therapeutic strategies for the prevention or reversal of muscular atrophy in diverse clinical scenarios.


Asunto(s)
MicroARNs , Enfermedades Musculares , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Transducción de Señal/genética
18.
J Tradit Complement Med ; 14(2): 121-134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481552

RESUMEN

Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.

19.
Front Neurosci ; 18: 1360205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419666

RESUMEN

Dopamine is a hormone that is released by the adrenal gland and influences motor control and motivation. Dopamine is known to have 5 receptors which are D1, D2, D3, D4 and D5, which are further categorized into 2 families: D1 family and D2 family. The D1 family is known to play a role in motivation and motor control whereas the D2 family is known to affect attention and sleep. THC, a type of cannabinoid, can lead to feelings of euphoria, anxiety, fear, distrust, or panic. THC is known to affect dopamine in regions such as the anterior cingulate cortex (ACC), and plays a role in fundamental cognitive processes. Although there is a vast amount of research between the relationship of THC on dopamine, there continues to be limited research in relation to THC on dopamine receptors. The D1 receptor plays a role in several essential functions, such as memory, attention, impulse control, regulation of renal function, and locomotion. Accordingly, this review is intended to summarize the relationship between THC and D1 receptors, highlighting key gaps in the literature and avenues for future research.

20.
Mol Biotechnol ; 66(5): 932-947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184492

RESUMEN

Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.


Asunto(s)
Plaquetas , Activación Plaquetaria , Humanos , Plaquetas/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/sangre , Células Endoteliales/metabolismo , Estrés Oxidativo , Biomarcadores/sangre , Selectina-P/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA