Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
1.
Protein Sci ; 33(10): e5175, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39276014

RESUMEN

Millions of years of evolution have optimized many biosynthetic pathways by use of multi-step catalysis. In addition, multi-step metabolic pathways are commonly found in and on membrane-bound organelles in eukaryotic biochemistry. The fundamental mechanisms that facilitate these reaction processes provide strategies to bioengineer metabolic pathways in synthetic chemistry. Using Brownian dynamics simulations, here we modeled intermediate substrate transportation of colocalized yeast-ester biosynthesis enzymes on the membrane. The substrate acetate ion traveled from the pocket of aldehyde dehydrogenase to its target enzyme acetyl-CoA synthetase, then the substrate acetyl CoA diffused from Acs1 to the active site of the next enzyme, alcohol-O-acetyltransferase. Arranging two enzymes with the smallest inter-enzyme distance of 60 Å had the fastest average substrate association time as compared with anchoring enzymes with larger inter-enzyme distances. When the off-target side reactions were turned on, most substrates were lost, which suggests that native localization is necessary for efficient final product synthesis. We also evaluated the effects of intermolecular interactions, local substrate concentrations, and membrane environment to bring mechanistic insights into the colocalization pathways. The computation work demonstrates that creating spatially organized multi-enzymes on membranes can be an effective strategy to increase final product synthesis in bioengineering systems.


Asunto(s)
Simulación de Dinámica Molecular , Acetiltransferasas/metabolismo , Acetiltransferasas/química , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Dominio Catalítico , Proteínas
2.
ACS Nano ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316824

RESUMEN

In the context of an increasingly escalating antibiotics crisis, phototherapy has emerged as a promising therapeutic approach due to its inherent advantages, including high selectivity, noninvasiveness, and low drug resistance. Photothermal therapy (PTT) and photodynamic therapy (PDT) are two complementary and promising phototherapies albeit with inherent limitations, noted as the challenges in achieving precise heat confinement and the associated risk of off-target damage for PTT, while the constraints due to the hypoxic microenvironment are prevalent in biofilms faced by PDT. Herein, we have designed a supramolecular nanoformulation that leverages the complexation-induced quenching of guanidinium-modified calix[5]arene grafted with fluorocarbon chains (GC5AF5), the efficient recognition of adenosine triphosphate (ATP), and the oxygen-carrying capacity of the fluorocarbon chain. This intelligent nanoformulation enables the adaptive enhancement of both photothermal therapy (PTT) and photodynamic therapy (PDT), allowing for on-demand switching between the two modalities. Our nanoformulation utilizes ATP released by dead bacteria to accelerate the elimination of biofilms, rendering bacteria unable to resist while minimizing harm to healthy tissues. This research highlights the particular recognition and assembly capabilities of macrocycles, offering a promising strategy for creating potent, combined antibiofilm therapies.

3.
Angew Chem Int Ed Engl ; : e202415226, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256966

RESUMEN

An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by > 100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5% and a specificity of 100%, which was established with 83 clinical samples.

4.
Chemistry ; : e202402600, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291646

RESUMEN

G-quadruplexes (G4s), as non-canonical DNA structures, attract a great deal of research interest in the molecular biology as well as in the material science fields. The use of small molecules as ligands for G-quadruplexes has emerged as a tool to regulate gene expression and telomeres maintenance. Meso-tetrakis-(N-methyl-4-pyridyl)porphyrin (TMPyP4) was shown as one of the first ligands for G-quadruplexes and it is still widely used. We report an investigation comprising molecular docking and dynamics, synthesis and multiple spectroscopic and spectrometric determinations on simple cationic porphyrins and their interaction with different DNA sequences. The study allowed to synthesize a few compounds that have shown to interact with DNA; the detailed characterization has shown that the presence of amide groups at the periphery improves selectivity for parallel G4s binding over other structures. Taking into account the ease of synthesis, 5,10,15,20-tetrakis-(1-acetamido-4-pyridyl)porphyrin bromide could be considered a better alternative to TMPyP4 in studies involving G4 binding.

6.
Int J Biol Macromol ; 279(Pt 2): 135277, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226978

RESUMEN

Mycoplasma pneumoniae and Mycoplasma genitalium are two emerging bacterial pathogens that colonize the human respiratory and urogenital epithelia, respectively. Both pathogens express cell surface cytoadhesins that play a crucial role in the interaction with the host, mediating the attachment to sialylated glycan receptors and triggering infection. The design of competitive binding inhibitors of Mycoplasma cytoadhesins has potential to disrupt these interactions and lessen bacterial pathogenesis. To this end, we report here molecular insights into the adhesion mechanisms of M. pneumoniae and M. genitalium, which are largely mediated by sialylated glycans on the host cell surface. In detail, a combination of Nuclear Magnetic Resonance (NMR) spectroscopy, fluorescence analysis and computational studies allowed us to explore the recognition by the cytoadhesins P40/P90 in M. pneumoniae and P110 in M. genitalium of sialylated N- and O-glycans. We reveal that, unlike other bacterial adhesins, which are characterized by a wide binding pocket, Mycoplasma cytoadhesins principally accommodate the sialic acid residue, in a similar manner to mammalian Siglecs. These findings represent crucial insight into the future development of novel compounds to counteract Mycoplasma infections by inhibiting bacterial adherence to host tissues.

7.
Small ; : e2403423, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254289

RESUMEN

Determining molecular structures is foundational in chemistry and biology. The notion of discerning molecular structures simply from the visual appearance of a material remained almost unthinkable until the advent of machine learning. This paper introduces a pioneering approach bridging the visual appearance of materials (both at the micro- and nanostructural levels) with traditional chemical structure analysis methods. Quaternary phosphonium salts are opted as the model compounds, given their significant roles in diverse chemical and medicinal fields and their ability to form homologs with only minute intermolecular variances. This research results in the successful creation of a neural network model capable of recognizing molecular structures from visual electron microscopy images of the material. The performance of the model is evaluated and related to the chemical nature of the studied chemicals. Additionally, unsupervised domain transfer is tested as a method to use the resulting model on optical microscopy images, as well as test models trained on optical images directly. The robustness of the method is further tested using a complex system of phosphonium salt mixtures. To the best of the authors' knowledge, this study offers the first evidence of the feasibility of discerning nearly indistinguishable molecular structures.

8.
bioRxiv ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39282355

RESUMEN

Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.

9.
Int J Biol Macromol ; 278(Pt 1): 134639, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128758

RESUMEN

A colloidal gold immunochromatographic assay (CGIA) based on single-chain variable fragments (scFvs) has been successfully developed for the detection of monensin (MON). Colloidal gold probes were conjugated to anti-MON scFvs through electrostatic interaction, with the conjugated objects serving as the visual signals. The detection lines were formed by capturing the antibody with MON-OVA. This assay offers a rapid detection time of 15 min, a wide linear range from 2.19 to 10.76 ng mL-1, and boasts high accuracy, precision, and an absence of cross-reactivity. By homology modeling and molecular docking, we predicted the interaction patterns between the scFv and monensin, and the amino acid residues involved in the recognition of MON by the antibody were analyzed. These key amino acid sites are presumed integral to ligand recognition per current interaction models. This hypothesis was confirmed by computer-aided alanine scanning mutation, MM/P(G)BSA molecular dynamics simulation, and in vitro binding experiments. In this study, we successfully developed the scFvs-based CGIA system for rapid and easy quantification of monensin, providing a simple, efficient routine detection of chicken muscle samples.


Asunto(s)
Pollos , Simulación del Acoplamiento Molecular , Monensina , Músculos , Anticuerpos de Cadena Única , Animales , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Músculos/química , Músculos/metabolismo , Simulación de Dinámica Molecular , Oro Coloide/química , Cromatografía de Afinidad/métodos
10.
Chemistry ; : e202402922, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215609

RESUMEN

This compound is a synthetic macrocycle comprising three pivaloyl-protected resorcinarene units connected by six pentylene chains. We conducted a conformational study using 1H-NMR, X-ray diffraction (XRD), and computational analyses. The macrocycle adopts two conformers, one open, the other closed. The ratio of the open to closed forms depended on the solvent used. Only the open form existed in [D8]toluene, both forms coexisted in [D6]benzene, and the closed form was the major conformer in [D1]chloroform. The benzene-solvated open form observed in the solid state suggests that cavity solvation by solvent molecules directs the open form. The open form was the major or only conformer in [D10]o- and [D10]m-xylene and [D12]mesitylene, whereas the closed form was the major conformer in [D6]acetone. The open and closed forms were equally populated in [D10]p-xylene, suggesting that the size, shape, and dimensions of the solvent molecules most likely influenced the conformation of the protected trisresocinarene.

11.
Angew Chem Int Ed Engl ; : e202413340, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183174

RESUMEN

An efficient strategy for high-performance chiral materials is to design and synthesize host molecules with left- and right- (M- and P-) twisted conformations and to control their twisted conformations. For this, a quantitative analysis is required to describe the chiroptical inversion, chiral transfer, and chiral recognition in the host-guest systems, which is generally performed using circular dichroism (CD) and/or proton nuclear magnetic resonance (1H-NMR) spectroscopies. However, the mass-balance model that considers the M- and P-twisted conformations has not yet been established. In this study, we derived the novel equations based on the mass-balance model for the 1:1 host-guest systems. Then, we further applied them to analyze the 1:1 host-guest systems for the achiral calixarene-based capsule molecule, achiral dimeric zinc porphyrin tweezer molecule, and chiral pillar[5]arene with the chiral and/or achiral guest molecules by using the data obtained from the CD titration, variable temperature CD (VT-CD), and 1H-NMR experiments. The thermodynamic parameters (ΔH and ΔS), equilibrium constants (K), and molar CD (Δε) in the 1:1 host-guest systems could be successfully determined by the theoretical analyses using the derived equations.

12.
Beilstein J Org Chem ; 20: 2084-2107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39189002

RESUMEN

Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.

13.
Angew Chem Int Ed Engl ; : e202413505, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163169

RESUMEN

Receptors for carboxylate anions have many possible biomedical applications, including mimicry of the vancomycin group of antibiotics.  However, binding carboxylates in water, the biological solvent, is highly challenging due to the hydrophilicity of these polar anions.  Here we report, for the first time, the recognition of simple carboxylates such as acetate and formate in water by synthetic receptors with charge-neutral binding sites.  The receptors are solubilised by polyanionic side-chains which, remarkably, do not preclude anion binding.  The tricyclic structures feature two identical binding sites linked by polyaromatic bridges, capable of folding into closed, twisted conformations.  This folding is hypothesised to preorganise the structures for anion recognition, mimicking the process which generates many protein binding sites.  The architecture is suitable for elaboration into enclosed structures with potential for selective recognition of biologically relevant carboxylates.

14.
Angew Chem Int Ed Engl ; : e202411613, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140458

RESUMEN

Cage-type structures based on coordination and dynamic covalent chemistry have the characteristics of facile and efficient preparation but poor stability. Chemically stable organic cages, generally involving fragment coupling and multi-step reactions, are relatively difficult to synthesize. Herein, we offer a general and modular strategy to customize covalent organic cages with diverse skeletons and sizes. First, one skeleton (S) module with three extension (E) modules and three reaction (R) modules are connected by one- or two-step coupling to get the triangular monomer bearing three reaction sites. Then one-pot Friedel-Crafts condensation of the monomer and linking module of paraformaldehyde produces the designed organic cages. The cage forming could be regulated by the geometrical configuration of monomeric blocks. The S-E-R angles in the monomer is crucial; only 120o (2,4-dimethoxyphen as reaction module) or 60o (2,5-dimethoxyphen as reaction module) angle between S-E-R successfully affords the resulting cages. By the rational design of the three modules, a series of organic cages have been constructed. In addition, the host-guest properties show that the representative cages could strongly encapsulate neutral aromatic diimine guests driven by solvophobic interactions in polar solvents, giving the highest association constant of (2.58 ± 0.18) × 105 M-1.

15.
Chemistry ; : e202402637, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128878

RESUMEN

Mastering of analytical methods for accurate quantitative determinations of enantiomeric excess is a crucial aspect in asymmetric catalysis, chiral synthesis, and pharmaceutical applications. In this context, the phenomenon of Self-Induced Diastereomeric Anisochronism (SIDA) can be exploited in NMR spectroscopy for accurate determinations of enantiomeric composition, without using a chiral auxiliary that could interfere with the spectroscopic investigation. This phenomenon can be particularly useful for improving the quantitative analysis of mixtures with low enantiomeric excesses, where direct integration of signals can be tricky. Here, we describe a novel analysis protocol to correctly determine the enantiomeric composition of scalemic mixtures and investigate the thermodynamic and stereochemical features at the basis of SIDA. Dipeptide derivatives were chosen as substrates for this study, given their central role in drug design. By integrating the experiments with a conformational stochastic search that includes entropic contributions, we provide valuable information on the dimerization thermodynamics, the nature of non-covalent interactions leading to self-association, and the differences in the chemical environment responsible for the anisochrony, highlighting the importance of different stereochemical arrangement and tight association for the distinction between homochiral and heterochiral adducts. An important role played by the counterion was pointed out by computational studies.

16.
Mol Microbiol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180229

RESUMEN

Many chemoreceptors contain a C-terminal pentapeptide at the end of a linker. In Escherichia coli, this pentapeptide forms a high-affinity binding site for CheR and phosphorylated CheB, and its removal interferes with chemoreceptor adaptation. Analysis of chemoreceptors revealed significant variation in their pentapeptide sequences, and bacteria often possess multiple chemoreceptors with differing pentapeptides. To assess whether this sequence variation alters CheR affinity and chemotaxis, we used Pectobacterium atrosepticum SCRI1043 as a model. SCRI1043 has 36 chemoreceptors, with 19 of them containing a C-terminal pentapeptide. We show that the affinity of CheR for the different pentapeptides varies up to 11-fold (KD 90 nM to 1 µM). Pentapeptides with the highest and lowest affinities differ only in a single amino acid. Deletion of the cheR gene abolishes chemotaxis. The replacement of the pentapeptide in the PacC chemoreceptor with those of the highest and lowest affinities significantly reduced chemotaxis to its cognate chemoeffector, L-Asp. Altering the PacC pentapeptide also reduced chemotaxis to L-Ser, but not to nitrate, which are responses mediated by the nontethered PacB and PacN chemoreceptors, respectively. Changes in the pentapeptide sequence thus modulate the response of the cognate receptor and that of another chemoreceptor.

17.
Biomimetics (Basel) ; 9(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39194464

RESUMEN

Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure-activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen-Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles.

18.
Colloids Surf B Biointerfaces ; 244: 114129, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39121572

RESUMEN

Molecular Recognition in nucleotides is crucial for medicine, underpinning precise interactions in genetic replication and therapy. Alkylated nucleotides, in particular, play a key role in modifying DNA to inhibit cancer cell growth. In this study, we focused on an alkylated nucleotide, PNM2 (3',4',6'-O-tristearoyl uridine or uridine tri-stearate), to investigate the interaction between adenine molecules in the aqueous subphase and PNM2 Langmuir monolayers. Utilizing techniques such as tensiometry, Brewster angle microscopy, infrared spectroscopy, surface potential measurements, and dilatational surface rheology, we found compelling evidence of molecular Recognition between the polar head of the insoluble amphiphile (uridine) in the monolayer and adenine in the aqueous subphase, attributed to hydrogen bonding. These interactions significantly influenced the physicochemical properties of the air-water interface, including monolayer expansion upon molecular recognition, decreased dilatational modulus, increased tensiometric stability of the monolayer when compressed to relevant surface pressures, and decreased surface potential. These findings are noteworthy for drug development, providing crucial insights into the mechanisms of nucleotide interactions.


Asunto(s)
Propiedades de Superficie , Alquilación , Enlace de Hidrógeno , Nucleótidos/química , Nucleótidos/metabolismo , Agua/química , Uridina/química , Adenina/química , Reología
19.
ACS Appl Mater Interfaces ; 16(36): 47110-47123, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189050

RESUMEN

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Research indicates that circulating histones, as pathogenic factors, may represent a therapeutic target for sepsis. However, effectively clearing circulating histones poses a challenge due to their structural similarity to normal blood proteins, their low abundance in the bloodstream, and serious interference from other blood biomacromolecules. Here we design a dodecapeptide-based functional polymer that can selectively adsorb circulating histones from the blood. The peptide, named P1 (HNHHQLALVESY), was discovered through phage display screening and demonstrated a strong affinity for circulating histones while exhibiting negligible affinities for common proteins in the blood, such as human serum albumin (HSA), immunoglobulin G (IgG), and transferrin (TRF). Furthermore, the P1 peptide was incorporated into a functional polymer design, poly(PEGMA-co-P1), which was immobilized onto a silica gel surface through reversible addition-fragmentation chain transfer polymerization. The resulting material was characterized using solid nuclear magnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. This material demonstrated the ability to selectively and efficiently capture circulating histones from both model solutions and whole blood samples while also exhibiting satisfactory blood compatibility, good antifouling properties, and resistance to interference. Satisfactory binding affinity and efficient capture capacity toward histone were also observed for the other screened peptide P2 (QMSMDLFGSNFV)-grafted polymer, validating phage display as a reliable ligand screening strategy. These findings present an approach for the specific clearance of circulating histones and hold promise for future clinical applications in blood purification toward sepsis.


Asunto(s)
Histonas , Sepsis , Sepsis/sangre , Humanos , Histonas/química , Histonas/sangre , Péptidos/química , Adsorción , Polímeros/química , Albúmina Sérica Humana/química
20.
Angew Chem Int Ed Engl ; : e202412056, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041859

RESUMEN

Solvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to -27 kJ mol-1 in the gas phase, but it was weakly disfavoured in our solution-phase experiments (+0.5 to +4.6 kJ mol-1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies ranged from -0.02 kJ mol-1 Å-2 in CS2, to -0.05 kJ mol-1 Å-2 in CD2Cl2, but were dwarfed by the calculated gas-phase energy of -0.6 kJ mol-1 Å-2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA