Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.906
Filtrar
1.
Biomed Tech (Berl) ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320241

RESUMEN

Mechanomyography (MMG) may be used to quantify very small motor responses resulting from muscle activation, voluntary or involuntary. The purpose of this study was to investigate the MMG mean peak amplitude (MPA) and area under the curve (AUC) and the corresponding mechanical responses following delivery of transcranial magnetic stimulation (TMS) to the knee extensors. Fourteen adults (23 ± 1 years) received single TMS pulses at intensities from 30-80 % maximum stimulator output to elicit muscle responses in the relaxed knee extensors while seated. An accelerometer-based sensor was placed on the rectus femoris (RF) and vastus lateralis (VL) muscle bellies to measure the MMG signal. Pearson correlation revealed a positive linear relationship between MMG MPA and TMS intensity for RF (r=0.569; p<0.001) and VL (r=0.618; p<0.001). TMS intensity of ≥60 % maximum stimulator output produced significantly higher MPA than at 30 % TMS intensity and evoked measurable movement at the knee joint. MMG MPA was positively correlated to AUC (r=0.957 for RF and r=0.603 for VL; both p<0.001) and knee extension angle (r=0.596 for RF and r=0.675 for VL; both p<0.001). In conclusion, MMG captured knee extensor mechanical responses at all TMS intensities with the response increasing with increasing TMS intensity. These findings suggest that MMG can be an additional tool for assessing muscle activation.

2.
Int J Neurosci ; : 1-12, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39230589

RESUMEN

OBJECTIVES: Magnetic seizure therapy (MST) is more benign than electroconvulsive therapy (ECT) in terms of cognitive impairment. However, whether these two 'artificial seizures' facilitate the central motor neural pathway and the motor cortical effects have not been investigated. The study aimed to compare the effects of ECT and MST on motor-evoked potential (MEP) in patients with mental disorders. METHODS: Forty-nine patients with mental disorders (major depressive disorder, bipolar disorder type II and schizophrenia [SCZ]) received 6 treatment sessions of vertex MST versus 6 bifrontal ECT treatments in a nonrandomized comparative clinical design. Data on the duration of motor seizures were collected for each treatment. MEP latency and the resting motor threshold (rMT) were measured at baseline and after every two treatments. Comparisons were performed between or within the groups. RESULTS: Seizure durations were significantly longer in the ECT group compared to the MST group across multiple sessions. Both MST and ECT demonstrated a significant reduction in rMT in the left and right hemispheres after the fourth (T3) and sixth treatments (T4) compared to baseline (T1). However, there were no significant changes in MEP latency within or between the groups throughout the treatment sessions. The only difference was that the rMT in the left cerebral hemisphere was significantly lower after T4 than after the second treatment (T2). There was no difference in rMT between the ECT and MST groups. CONCLUSIONS: Both ECT and MST facilitate the central motor pathway, with a shared mechanism of increased motor cortex excitability.

3.
Physiol Rep ; 12(19): e70067, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39349984

RESUMEN

Anodal transcranial direct current stimulation (tDCS) promotes neuromodulation and neuroplasticity in the brain. The aim of this study was to determine the long-term effects of the anodal tDCS on postural and trunk stability, physical performance, anticipatory postural adjustment and quality of life in sub-acute stroke patients. Thirty-six participants with sub-acute stroke were divided into experimental and control groups using sealed envelope randomization. Outcome measures comprised the Postural Assessment Scale for Stroke, Trunk Impairment Scale, Time Up and Go Test, Functional Reach Test, and Stroke-Specific Quality of Life Scale. Assessments were conducted at 0, 3, 6, 9, and 12 weeks. Within-group analysis revealed significant improvement in both the experimental (p-value < 0.05) and control groups (p-value < 0.005). Notably, significant effects were observed in postural stability after intervention, and during one of the detraining assessments, the experimental group showed superior results compared to the control group in subacute stroke. Anodal tDCS yield significant short- and long-term effects on postural stability, while short term effects on trunk stability. Additionally, long term effects were observed on the physical performance and anticipatory postural adjustments while no effects at quality of life either short or long term basis among the subacute stroke patients.


Asunto(s)
Equilibrio Postural , Calidad de Vida , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Equilibrio Postural/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Persona de Mediana Edad , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Anciano , Adulto , Resultado del Tratamiento
4.
Front Synaptic Neurosci ; 16: 1433977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267890

RESUMEN

Short-term plasticity is an important feature in the brain for shaping neural dynamics and for information processing. Short-term plasticity is known to depend on many factors including brain region, cortical layer, and cell type. Here we focus on vasoactive-intestinal peptide (VIP) interneurons (INs). VIP INs play a key disinhibitory role in cortical circuits by inhibiting other IN types, including Martinotti cells (MCs) and basket cells (BCs). Despite this prominent role, short-term plasticity at synapses to and from VIP INs is not well described. In this study, we therefore characterized the short-term plasticity at inputs and outputs of genetically targeted VIP INs in mouse motor cortex. To explore inhibitory to inhibitory (I → I) short-term plasticity at layer 2/3 (L2/3) VIP IN outputs onto L5 MCs and BCs, we relied on a combination of whole-cell recording, 2-photon microscopy, and optogenetics, which revealed that VIP IN→MC/BC synapses were consistently short-term depressing. To explore excitatory (E) → I short-term plasticity at inputs to VIP INs, we used extracellular stimulation. Surprisingly, unlike VIP IN outputs, E → VIP IN synapses exhibited heterogeneous short-term dynamics, which we attributed to the target VIP IN cell rather than the input. Computational modeling furthermore linked the diversity in short-term dynamics at VIP IN inputs to a wide variability in probability of release. Taken together, our findings highlight how short-term plasticity at VIP IN inputs and outputs is specific to synapse type. We propose that the broad diversity in short-term plasticity of VIP IN inputs forms a basis to code for a broad range of contrasting signal dynamics.

5.
J Neural Eng ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321851

RESUMEN

OBJECTIVE: The phase of the electroencephalographic (EEG) signal predicts performance in motor, somatosensory, and cognitive functions. Studies suggest that brain phase resets align neural oscillations with external stimuli, or couple oscillations across frequency bands and brain regions. Transcranial Magnetic Stimulation (TMS) can cause phase resets noninvasively in the cortex, thus providing the potential to control phase-sensitive cognitive functions. However, the relationship between TMS parameters and phase resetting is not fully understood. This is especially true of TMS intensity, which may be crucial to enabling precise control over the amount of phase resetting that is induced. Additionally, TMS phase resetting may interact with the instantaneous phase of the brain. Understanding these relationships is crucial to the development of more powerful and controllable stimulation protocols. Approach: To test these relationships, we conducted a TMS-EEG study. We applied single-pulse TMS at varying degrees of stimulation intensity to the motor area in an open loop. Offline, we used an autoregressive algorithm to estimate the phase of the intrinsic µ-Alpha rhythm of the motor cortex at the moment each TMS pulse was delivered. Main results: We identified post-stimulation epochs where µ-Alpha phase resetting and N100 amplitude depend parametrically on TMS intensity and are significant versus peripheral auditory sham stimulation. We observed µ-Alpha phase inversion after stimulations near peaks but not troughs in the endogenous µ-Alpha rhythm. Significance: These data suggest that low-intensity TMS primarily resets existing oscillations, while at higher intensities TMS may activate previously silent neurons, but only when endogenous oscillations are near the peak phase. These data can guide future studies that seek to induce phase resetting, and point to a way to manipulate the phase resetting effect of TMS by varying only the timing of the pulse with respect to ongoing brain activity.

6.
Ibrain ; 10(3): 375-377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346793

RESUMEN

Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, but an in vivo understanding of its early pathology remains limited. A recent study used topographic layer imaging to investigate iron and calcium accumulation in the primary motor cortex (M1) of patients with ALS compared with controls. Despite the preserved cortical thickness, ALS patients showed increased iron in layer 6 and calcium accumulation in layer 5a and the superficial layer. Calcium accumulation was particularly prominent in the low-myelin borders, potentially preceding the demyelination. This study reveals a novel in vivo pathology in ALS, suggesting that calcium dysregulation may precede iron accumulation and contribute to early M1 cell degeneration. Further investigation using quantitative susceptibility mapping and complementary techniques, such as diffusion kurtosis imaging, along with ultrahigh-field magnetic resonance imaging, into the role of calcium and early intervention strategies is warranted.

7.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288997

RESUMEN

There is experimental evidence of varying correlation among the elements of the neuromuscular system over the course of the reach-and-grasp task. The aim of this study was to investigate if modifications in correlations and clustering can be detected in the local field potential (LFP) recordings of the motor cortex during the task. To this end, we analyzed the LFP recordings from a previously published study on monkeys that performed a reach-and-grasp task for targets with a vertical or horizontal orientation. LFP signals were recorded from the motor and premotor cortex of macaque monkeys as they performed the task. We found very robust changes in the correlations of the multielectrode LFP recordings that corresponded to task epochs. Mean LFP correlation increased significantly during reach and then decreased during grasp. This pattern was very robust for both left and right arm reaches irrespective of target orientation. A hierarchical cluster analysis also demonstrated similar changes. In focusing on correlations, our study has contributed new insights to the understanding of LFP signals and their relationship to movement. A sliding window computation of the number of clusters was performed to probe the capacities of the LFP clusters for detecting upcoming task events. For a very high percentage of trials (97.89%), there was a downturn in cluster number following the Pellet Drop (GO signal) that reached a minimum preceding the Start of grasp, hence indicating that cluster analyses of LFPs could contribute to signaling an increased probability of the Start of grasp.


Asunto(s)
Fuerza de la Mano , Corteza Motora , Animales , Corteza Motora/fisiología , Fuerza de la Mano/fisiología , Análisis por Conglomerados , Masculino , Macaca mulatta , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Potenciales de Acción/fisiología
8.
Neuron ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270654

RESUMEN

Incentives tend to drive improvements in performance. But when incentives get too high, we can "choke under pressure" and underperform right when it matters most. What neural processes might lead to choking under pressure? We studied rhesus monkeys performing a challenging reaching task in which they underperformed when an unusually large "jackpot" reward was at stake, and we sought a neural mechanism that might result in that underperformance. We found that increases in reward drive neural activity during movement preparation into, and then past, a zone of optimal performance. We conclude that neural signals of reward and motor preparation interact in the motor cortex (MC) in a manner that can explain why we choke under pressure.

9.
Bioelectromagnetics ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279429

RESUMEN

This computational simulation study investigates the strength of transcranial magnetic stimulation (TMS)-induced electric fields (EF) in primary motor cortex (M1) and secondary motor areas. Our results reveal high interindividual variability in the strength of TMS-induced EF responses in secondary motor areas, relative to the stimulation threshold in M1. Notably, the activation of the supplementary motor area requires high-intensity stimulation, which could be attributed to the greater scalp-to-cortex distance observed over this area. These findings emphasize the importance of individualized planning using computational simulation for optimizing neuromodulation strategies targeting the cortical motor system.

10.
Sci Rep ; 14(1): 21174, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256434

RESUMEN

Vasoactive intestinal polypeptide (VIP) is known to be present in a subclass of cortical interneurons. Here, using three different antibodies, we demonstrate that VIP is also present in the giant layer 5 pyramidal (Betz) neurons which are characteristic of the limb and axial representations of the marmoset primary motor cortex (cytoarchitectural area 4ab). No VIP staining was observed in smaller layer 5 pyramidal cells present in the primary motor facial representation (cytoarchitectural area 4c), or in the premotor cortex (e.g. the caudal subdivision of the dorsal premotor cortex, A6DC), indicating the selective expression of VIP in Betz cells. VIP in Betz cells was colocalized with neuronal specific marker (NeuN) and a calcium-binding protein parvalbumin (PV). PV also intensely labelled axon terminals surrounding Betz cell somata. VIP-positive interneurons were more abundant in the superficial cortical layers and constituted about 5-7% of total cortical neurons, with the highest density observed in area 4c. Our results demonstrate the expression of VIP in the largest excitatory neurons of the primate cortex, which may offer new functional insights into the role of VIP in the brain, and provide opportunities for genetic manipulation of Betz cells.


Asunto(s)
Callithrix , Interneuronas , Corteza Motora , Células Piramidales , Péptido Intestinal Vasoactivo , Animales , Femenino , Masculino , Biomarcadores/metabolismo , Interneuronas/metabolismo , Corteza Motora/metabolismo , Corteza Motora/citología , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Péptido Intestinal Vasoactivo/análisis , Péptido Intestinal Vasoactivo/metabolismo
11.
Neurophysiol Clin ; 54(6): 103012, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278041

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN: The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION: This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.

12.
Front Mol Neurosci ; 17: 1414457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246601

RESUMEN

Introduction: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder whose exact pathophysiology has not been fully understood yet. Numerous studies have suggested disruptions in the cellular architecture and neuronal activity within brain structures of individuals with ADHD, accompanied by imbalances in the immune system, oxidative stress, and metabolism. Methods: This study aims to assess two functionally and histologically distinct brain areas involved in motor control and coordination: the motor cortex (MC) and prefrontal cortex (PFC). Namely, the morphometric analysis of the MC throughout the developmental stages of Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Additionally, the study aimed to investigate the levels and activities of specific immune, oxidative stress, and metabolic markers in the PFC of juvenile and maturing SHRs in comparison to WKYs. Results: The most significant MC volume reductions occurred in juvenile SHRs, accompanied by alterations in neuronal density in these brain areas compared to WKYs. Furthermore, juvenile SHRs exhibit heightened levels and activity of various markers, including interleukin-1α (IL-1α), IL-6, serine/threonine-protein mammalian target of rapamycin, RAC-alpha serine/threonine-protein kinase, glucocorticoid receptor ß, malondialdehyde, sulfhydryl groups, superoxide dismutase, peroxidase, glutathione reductase, glutathione S-transferase, glucose, fructosamine, iron, lactic acid, alanine, aspartate transaminase, and lactate dehydrogenase. Discussion: Significant changes in the MC morphometry and elevated levels of inflammatory, oxidative, and metabolic markers in PFC might be associated with disrupted brain development and maturation in ADHD.

13.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229238

RESUMEN

BACKGROUND: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are therefore needed. METHODS: As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS during classifier-predicted personalized CST states. RESULTS: MEP amplitudes elicited in real-time during personalized strong CST states were significantly larger than those elicited during personalized weak and random CST states. MEP amplitudes elicited in real-time during personalized strong CST states were also significantly less variable than those elicited during personalized weak CST states. Personalized CST states lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between personalized strong and weak CST states. CONCLUSION: Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.

14.
Brain ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300838

RESUMEN

Recent progress in the study of Parkinson's disease (PD) has highlighted the pivotal role of beta oscillations within the basal ganglia-thalamo-cortical network in modulating motor symptoms. Predominantly manifesting as transient bursts, these beta oscillations are central to the pathophysiology of PD motor symptoms, especially bradykinesia. Our central hypothesis is that increased bursting duration in cortex, coupled with kinematics of movement, disrupts the typical flow of neural information, leading to observable changes in motor behavior in PD. To explore this hypothesis, we employed an integrative approach, analyzing the interplay between moment-to-moment brain dynamics and movement kinematics, and the modulation of these relationships by therapeutic deep brain stimulation (DBS). Local field potentials were recorded from the hand motor (M1) and premotor cortical (PM) areas, and internal Globus Pallidus (GPi) in 26 PD patients undergoing DBS implantation surgery. Participants executed rapid alternating hand movements in 30-second blocks, both with and without therapeutic pallidal stimulation. Behaviorally, the analysis revealed bradykinesia, with hand movement cycle width increasing linearly over time during DBS-OFF blocks. Crucially, there was a moment-to-moment correlation between M1 low beta burst duration and movement cycle width, a relationship that dissipated with therapeutic DBS. Further analyses suggest that high gamma activity correlates with enhanced motor performance with DBS-ON. Regardless of the nature of coupling, DBS's modulation of cortical bursting activity appeared to amplify the brain signals' informational content regarding instantaneous movement changes. Our findings underscore that DBS significantly reshapes the interaction between motor behavior and neural signals in PD, not only modulating specific bands but also expanding the system's capability to process and relay information for motor control. These insights shed light on the possible network mechanisms underlying DBS therapeutic effects, suggesting a profound impact on both neural and motor domains. Mirpour and Pouratian investigate the interplay between movement, brain oscillations and deep brain stimulation (DBS) in Parkinson's disease. They show that beta oscillations interfere with the moment-to-moment control of movement, and that DBS can enhance communication within brain networks, mitigating these effects.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39308147

RESUMEN

The human face plays a central role in emotions and social communication. The emotional and somatic motor networks generate facial behaviors, but whether facial behaviors have representations in the structural anatomy of the human brain is unknown. We coded 16 facial behaviors in 55 healthy older adults who viewed five videos that elicited emotions and examined whether individual differences in facial behavior related to regional variation in gray matter volume. Voxel-based morphometry analyses revealed that greater emotional facial behavior during the disgust trial (i.e., greater brow furrowing and eye tightening as well as nose wrinkling and upper lip raising) and the amusement trial (i.e., greater smiling and eye tightening) was associated with larger gray matter volume in midcingulate cortex, supplementary motor area, and precentral gyrus, areas spanning both the emotional and somatic motor networks. When measured across trials, however, these facial behaviors (and others) only related to gray matter volume in the precentral gyrus, a somatic motor network hub. These findings suggest that the emotional and somatic motor networks store structural representations of facial behavior, and that the midcingulate cortex is critical for generating the predictable movements in the face that arise during emotions.

16.
Brain Sci ; 14(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39335363

RESUMEN

Transcranial magnetic stimulation (TMS) represents a distinctive technique for non-invasive brain stimulation. Recent advancements in image processing have enabled the enhancement of TMS by integrating magnetic resonance imaging (MRI) modalities with TMS via a neuronavigation system. The aim of this study is to assess the efficacy of navigated TMS for cortical mapping in comparison to surgical mapping using direct electrical stimulation (DES). This study involved 30 neurosurgical procedures for tumors located in or adjacent to the precentral gyrus. The DES points were compared with TMS responses based on the original distances of vectorial modules. There was a notable similarity in the points obtained from the two mapping methods. The distances between the geometric centers of TMS and DCS were 4.85 ± 1.89 mm. A strong correlation was identified between these vectorial points (r = 0.901, p < 0.001). The motor threshold in TMS was highest in the motor cortex adjacent to the tumor compared to the normal cortex (p < 0.001). Patients with deficits exhibited excellent accuracy in both methods. In view of this, TMS demonstrated reliable and precise application in brain mapping, which is a promising method for preoperative functional mapping in motor cortex tumor surgery.

17.
Cell Rep ; 43(9): 114718, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39277859

RESUMEN

Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas. Additionally, while infragranular ET and non-ET neurons retain distinct neuronal properties across multiple regions, there are regional morpho-electric and gene expression specializations in the L5 ET subclass, providing mechanistic insights into the specialized functional architecture of the primate neocortex.


Asunto(s)
Neuronas , Transcriptoma , Animales , Neuronas/metabolismo , Neuronas/citología , Transcriptoma/genética , Neocórtex/citología , Neocórtex/metabolismo , Corteza Motora/citología , Corteza Motora/metabolismo , Masculino , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Macaca mulatta
18.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106175

RESUMEN

Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.


Asunto(s)
Corteza Cerebral , Sinapsis , Microscopía Electrónica de Volumen , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Cerebral/ultraestructura , Espinas Dendríticas/ultraestructura , Imagenología Tridimensional/métodos , Sinapsis/ultraestructura
19.
Surg Neurol Int ; 15: 228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108387

RESUMEN

Background: Gliomas, the most common primary brain tumors, pose surgical challenges in eloquent cortex regions due to potential deficits affecting patients' quality of life (QOL) and increased mortality risk. This study investigates motor and sensory recovery postresection of Rolandic cortex gliomas in 40 patients, alongside seizure outcomes and the efficacy of intraoperative techniques such as awake craniotomy. Methods: This was a 10-year monocentric retrospective study based on the experience of a neurosurgeon in the resection of Rolandic gliomas and its impact on 40 patients' QOL in a period from 2011 to 2020. The primary outcomes were tumor recurrence and the efficacy of the surgery defined as survival status, seizure status, and sensory and motor neurological deficits. Data collection included demographic, tumor, and surgical outcome variables. The extent of resection (EOR) was classified as gross total resection (GTR) (EOR ≥95%) or subtotal resection (EOR <95%). Statistical analysis involved descriptive statistics and inferential tests for outcome comparisons. Results: Patients were aged an average of 42.3 ± 14 years and distributed between 72.5% of males and 27.5% of females. The most common presentation was seizures (65%). The tumor was located in the frontal lobe at 65%, the motor at 75%, and the top tumor pathology was oligodendroglioma (42.5%). The recurrence rate in the study was 20% (8 of 40), and the 1-year survival rate was 92.5%. After the resection, significant improvement was shown in Karnofsky's performance status (P = 0.007), in normal daily activities (P = 0.001), in fine motor skills (P = 0.020), and work hobbies (P = 0.046). No statistically significant improvement was shown in seizures and deficit rates. Recurrence was not associated with the demographic characteristics, clinical presentation, tumor-related characteristics (location, area, side, and mutation), tumor resection, and adjuvant treatment (P > 0.05). Conclusion: GTR of Rolandic gliomas can be achieved with the use of meticulous stimulation mapping, and complete functional recovery is attainable despite common belief.

20.
J Integr Neurosci ; 23(8): 161, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39207080

RESUMEN

BACKGROUND: The clinical application of 10 Hz repetitive transcranil magnetic stimulation (rTMS) remains limited despite its demonstrated effectiveness in enhancing cortical excitability and improving cognitive function. The present study used a novel stimulus target [left dorsolateral prefrontal cortex + primary motor cortex] to facilitate the enhancement of cognitive function through the bidirectional promotion of cognitive and motor functions; Methods: Post-stroke cognitive impairment patients (n = 48) were randomly assigned to receive either dual-target, single-target, or sham rTMS for 4 weeks. Before and after 4 weeks of treatment, participants were asked to complete the Montreal Cognitive Assessment (MoCA) test, the Modified Barthel Index (MBI), the Trail-making Test (TMT), and the Digital Span Test (DST). In addition, the levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in serum were also measured. RESULTS: After adjusting for pre-intervention (baseline) MoCA scores, the post-intervention MoCA scores varied significantly. After post-hoc analysis, differences existed between the post-treatment scores of the dual-target rTMS group and the sham rTMS group (the experimental group scores were significantly higher), and between those of the dual-target rTMS group and the single-target rTMS group (the dual-target rTMS scores were significantly higher). The serum VEGF levels of the dual-target rTMS group were significantly higher those that of the sham rTMS group. CONCLUSIONS: The present study presented data showing that a dual-target rTMS therapy is effective for Post-stroke cognitive impairment (PSCI). The stimulation exhibited remarkable efficacy, suggesting that dual-target stimulation (left dorsolateral prefrontal cortex+motor cortex (L-DLPFC+M1)) holds promise as a potential target for TMS therapy in individuals with cognitive impairment after stroke. CLINICAL TRIAL REGISTRATION: No: ChiCTR220066184. Registered 26 November, 2022, https://www.chictr.org.cn.


Asunto(s)
Disfunción Cognitiva , Corteza Motora , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/fisiopatología , Femenino , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Corteza Motora/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Corteza Prefontal Dorsolateral , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA