Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.604
Filtrar
1.
J Environ Sci (China) ; 149: 99-112, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181682

RESUMEN

With the increasing demand for water in hydroponic systems and agricultural irrigation, viral diseases have seriously affected the yield and quality of crops. By removing plant viruses in water environments, virus transmission can be prevented and agricultural production and ecosystems can be protected. But so far, there have been few reports on the removal of plant viruses in water environments. Herein, in this study, easily recyclable biomass-based carbon nanotubes catalysts were synthesized with varying metal activities to activate peroxymonosulfate (PMS). Among them, the magnetic 0.125Fe@NCNTs-1/PMS system showed the best overall removal performance against pepper mild mottle virus, with a 5.9 log10 removal within 1 min. Notably, the key reactive species in the 0.125Fe@NCNTs-1/PMS system is 1O2, which can maintain good removal effect in real water matrices (river water and tap water). Through RNA fragment analyses and label free analysis, it was found that this system could effectively cleave virus particles, destroy viral proteins and expose their genome. The capsid protein of pepper mild mottle virus was effectively decomposed where serine may be the main attacking sites by 1O2. Long viral RNA fragments (3349 and 1642 nt) were cut into smaller fragments (∼160 nt) and caused their degradation. In summary, this study contributes to controlling the spread of plant viruses in real water environment, which will potentially help protect agricultural production and food safety, and improve the health and sustainability of ecosystems.


Asunto(s)
Biomasa , Nanotubos de Carbono , Nanotubos de Carbono/química , Virus de Plantas/fisiología , Purificación del Agua/métodos , Tobamovirus , Peróxidos
2.
Angew Chem Int Ed Engl ; : e202412084, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087346

RESUMEN

Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV-Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.

3.
Food Chem ; 460(Pt 2): 140733, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39111138

RESUMEN

Celery is a food allergen that must be included in the ingredient list of commercial food products in the European Union. This is a challenge for the food industry because of potential cross-contamination and undeclared ingredients because of their low concentrations. So, the food industry requires expedited high-performance analytical methods. The development, validation and application of a magnetic nanomaterial-based voltammetric immunosensor is reported to quantify a major celery allergen (Api g 1), achieving a low limit of detection (32 pg·mL-1, in a 40-µL sample). The applicability of the biosensor was evaluated by analysing twenty food products and the lowest Api g 1 content (1.1 ± 0.9 mg·kg-1) was quantified in a cooked sample. The selectivity of the method and the interference of similar fresh products (e.g., parsley, basil) were evaluated. This portable and easy-to-use biosensor can be a fit-for-purpose solution to tackle a major problem for the food industry.

4.
BMC Oral Health ; 24(1): 893, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098928

RESUMEN

BACKGROUND: Polymethylmethacrylate (PMMA) bone cement is used in orthopedics and dentistry to get primary fixation to bone but doesn't provide a mechanically and biologically stable bone interface. Therefore, there was a great demand to improve the properties of the PMMA bone cement to reduce its clinical usage limitations and enhance its success rate. Recent studies demonstrated that the addition of halloysite nanotubes (HNTs) to a polymeric-based material can improve its mechanical and thermal characteristics. OBJECTIVES: The purpose of the study is to assess the compressive strength, flexural strength, maximum temperature, and setting time of traditional PMMA bone cements that have been manually blended with 7 wt% HNT fillers. METHODS: PMMA powder and monomer liquid were combined to create the control group, the reinforced group was made by mixing the PMMA powder with 7 wt% HNT fillers before liquid mixing. Chemical characterization of the HNT fillers was employed by X-ray fluorescence (XRF). The morphological examination of the cements was done using a scanning electron microscope (SEM). Analytical measurements were made for the compressive strength, flexural strength, maximum temperature, and setting time. Utilizing independent sample t-tests, the data was statistically assessed to compare mean values (p < 0.05). RESULTS: The findings demonstrated that the novel reinforced PMMA-based bone cement with 7 wt% HNT fillers showed higher mean compressive strength values (93 MPa) and higher flexural strength (72 MPa). and lower maximum temperature values (34.8 °C) than the conventional PMMA bone cement control group, which was (76 MPa), (51 MPa), and (40 °C), respectively (P < 0.05). While there was no significant difference in the setting time between the control and the modified groups. CONCLUSION: The novel PMMA-based bone cement with the addition of 7 wt% HNTs can effectively be used in orthopedic and dental applications, as they have the potential to enhance the compressive and flexural strength and reduce the maximum temperatures.


Asunto(s)
Cementos para Huesos , Arcilla , Fuerza Compresiva , Resistencia Flexional , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanotubos , Polimetil Metacrilato , Polimetil Metacrilato/química , Nanotubos/química , Arcilla/química , Cementos para Huesos/química , Silicatos de Aluminio/química , Espectrometría por Rayos X , Temperatura , Propiedades de Superficie
5.
Sci Rep ; 14(1): 18022, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098951

RESUMEN

Herein, a hydrothermal etching approach was used to generate an innovative CuS/O,N-CNT composite. The hydrothermal etching of g-C3N4 led to the creation of O,N-CNT, with ethanol as the oxygen source. The SEM and TEM characterizations confirmed the formation of CNT, whereas the XPS analysis proved the doping of oxygen and nitrogen in the CNT matrix along with the incorporation of CuS. Under sun irradiation, the produced CuS/O,N-CNT showed outstanding photocatalytic efficiency, eliminating methyl orange and methylene blue dyes with 97.21% and 98.11% efficacy, respectively. Adding hydrothermally etched O,N-CNT increased light absorption and charge migration kinetics, as can be studied from the UV-DRS and PL analysis; hence, the observed improvements in light absorption and charge transfer pathways contributed to the CuS/O,N-CNT composite's enhanced photocatalytic activity, indicating its potential for efficient elimination of organic contaminants under solar irradiation. The catalyst demonstrated high reusability performance up to six cycles and significantly degraded other dyes. Scavenger analysis, along with VB-XPS and UV-DRS analysis, aid in developing a photocatalytic mechanism that confirms the participation of hydroxyl and superoxide radicals in the degradation process.

6.
Heliyon ; 10(14): e33922, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104476

RESUMEN

Cs2BiAgI6 is a lead-free inorganic perovskite material exhibits exceptional photoelectric characteristics and great environmental stability. HTL/Cs2BiAgI6is/ETLs solar cells was investigated numerically by using SCAPS 1-D Capacitance Simulator. IGZO, TiO2, WO3, MoO3, and SnO2 have been chosen as ETLs, while CuO, CuI, and MoO3 are as HTLs. The values of electrical parameters were calculated as function of thickness of the absorber layer, ETLs, HTLs, interface defect densities, doping densities, and working temperature. Comparative study shows that best configuration of obtain solar cell is MoO3/Cs2BiAgI6/IGZO. The obtain value of Jsc, Voc, FF and PCE are 23.80 mA/cm2, 1.193 V, 83.46 %, 23.711 % respectively. The value of quantum efficiency is 80-90 % in the range of 350-750 nm. These results will open the door for the widespread use of stable and environmentally friendly perovskite solar cells by providing theoretical recommendations for high performance of Cs2BiAgI6 based photovoltaic solar cells (PSCs).

7.
Mikrochim Acta ; 191(9): 518, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107518

RESUMEN

A nanocomposite of cobalt nanoparticle (CoNP) functionalized carbon nanotube (Co@CNT) was prepared and used to modify a glassy carbon electrode (Co@CNT/GCE). Characterization indicates the morphology of Co@CNT is CoNPs adhering on CNTs. With the nano-interface, Co@CNT provides large surface area, high catalytic activity, and efficient electron transfer, which makes Co@CNT/GCE exhibiting satisfactory electrochemical response toward quercetin (QC) and folic acid (FA). The optimum pH values for the detection of FA and QC are 7.0 and 3.0, respectively. The saturated absorption capacity (Γ*) and catalytic rate constant (kcat) of Co@CNT/GCE for QC and FA are calculated as 1.76 × 10-9, 3.94 × 10-10 mol∙cm-2 and 3.04 × 102, 0.569 × 102 M-1∙s-1. The linear range for both FA and QC is estimated to be 5.0 nM-10 µM, and the LODs (3σ/s) were 2.30 nM and 2.50 nM, respectively. The contents of FA and QC in real samples determined by Co@CNT/GCE are comparable with the results determined by HPLC. The recoveries were in the range 90.5 ~ 114% and the total RSD was lower than 8.67%, which further confirms the reliability of the proposed electrode for practical use.

8.
Small Methods ; : e2400474, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39108201

RESUMEN

In recent years, 1D nanostructure-based devices have achieved widespread usage in various fields, such as sensors, energy harvesters, transistors, and electrodes owing to their exceptional and distinct properties. The pioneering work of Dr. R. S. Wagner at Bell Laboratories in 1964 introduced the vapor-liquid-solid (VLS) process, a powerful synthesis method. Since then, numerous synthesis techniques, including sol-gel, hydrothermal, chemical vapor deposition (CVD), physical vapor deposition (PVD), and more, have been developed. These methods have enabled researchers to effectively control the shape (length and diameter) and material properties of nanowires. However, it was only about two decades ago that nanowires started to be widely utilized as key components in functional devices, primarily due to the lack of proper integration methods. Although dozens of integration techniques have been developed, none have emerged as a predominant choice, with each method presenting its own set of advantages and limitations. Therefore, this work aims to categorize these methods based on their working principles and provide a comprehensive summary of their pros and cons. Additionally, state-of-the-art devices that capitalize on the integration of 1D nanomaterials are introduced.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39099309

RESUMEN

Triple-negative breast cancer (TNBC) has short survival rates. This study aimed to prepare a novel formula of sorafenib, carbon nanotubes (CNTs), and folic acid to be tested as a drug delivery system targeting versus TNBC compared with free sorafenib and to evaluate the formula stability, in vitro pharmacodynamic, and in vivo pharmacokinetic properties. The formula preparation was done by the synthesis of polyethylene glycol bis amine linker, CNT PEGylation, folic acid attachment, and sorafenib loading. The prepared formula has been characterized using X-ray diffraction, Flourier-transform infrared, 1HNMR, UV, high resolution-transmission electron microscope, field emission scanning electron microscopy, and Zeta potential. In vitro studies included drug release determination, MTT assay, flow cytometry to determine the apoptotic stage with percent, cell cycle analysis, and apoptotic marker assays for caspase-3, 8, 9, cytochrome c, and BCL-2. The in vivo study was performed to determine bioavailability and half-life in rats. The in vitro MTT antiproliferative assay revealed that the formula was threefold more cytotoxic toward TNBC cells than free sorafenib, and the flow cytometry showed a significant increase in apoptosis and necrosis. The formula has a greater inhibitory effect on BCL-2 and a lessening effect on cytochrome c and caspases 3, 8, and 9 than free sorafenib. In vivo experiments proved that our novel formula was superior to free sorafenib by increasing bioavailability by eight times and prolonging the half-life by three times. These results confirmed the successful preparation of the desired formula with better pharmacodynamic and pharmacokinetic properties. These promising results may show a novel therapeutic strategy for TNBC patients.

10.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39120377

RESUMEN

This brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1-xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation.

11.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39120396

RESUMEN

The increasing reliance on electronic technologies has elevated the urgency of effective electromagnetic interference (EMI) shielding materials. This review explores the development and potential of magnetite-incorporated one-dimensional (1D) carbon nanostructure hybrids, focusing on their unique properties and synthesis methods. By combining magnetite's magnetic properties with the electrical conductivity and mechanical strength of carbon nanostructures such as carbon nanotubes (CNTs) and carbon fibers (CFs), these hybrids offer superior EMI shielding performance. Various synthesis techniques, including solvothermal synthesis, in situ growth, and electrostatic self-assembly, are discussed in detail, highlighting their impact on the structure and properties of the resulting composites. This review also addresses the challenges in achieving homogeneous dispersion of nanofillers and the environmental and economic considerations of large-scale production. The hybrid materials' multifunctionality, including enhanced mechanical strength, thermal stability, and environmental resistance, underscores their suitability for advanced applications in aerospace, electronics, and environmental protection. Future research directions focus on optimizing synthesis processes and exploring new hybrid configurations to further improve electromagnetic properties and practical applicability.

12.
Nanomaterials (Basel) ; 14(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120403

RESUMEN

The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically oxidized nanotubes. The modification process employed a reactor where plasma was generated through dielectric barrier discharges (DBD) powered by high-voltage nanosecond pulses. Various modification conditions were examined, such as processing time and pulse voltage amplitude. The degree of oxidation and the impact on the chemistry and structure of the nanotubes was investigated through various physicochemical and morphological characterization techniques (XPS, BET, TEM, etc.). Maximum oxidation (O/C = 0.09 from O/C = 0.02 for pristine MWCNTs) was achieved after 60 min of nanopulsed-DBD plasma treatment. Subsequently, the modified nanotubes were used as adsorbents for the removal of the dye methylene blue (MB) from water. The adsorption experiments examined the effects of contact time between the adsorbent and MB, as well as the initial dye concentration in water. The plasma-modified nanotubes exhibited high MB removal efficiency, with adsorption capacity proportional to the degree of oxidation. Notably, their adsorption capacity significantly increased compared to both pristine and chemically oxidized MWCNTs (~54% and ~9%, respectively). Finally, the kinetics and mechanism of the adsorption process were studied, with experimental data fitting well to the pseudo-second-order kinetic model and the Langmuir isotherm model. This study underscores the potential of plasma technology as a low-cost and environmentally friendly approach for material modification and water purification.

13.
J Colloid Interface Sci ; 677(Pt A): 842-852, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39126802

RESUMEN

The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.

14.
Adv Sci (Weinh) ; : e2404913, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119888

RESUMEN

Actuators based on shape memory polymers and composites incorporating nanomaterial additives have been extensively studied; achieving both high output stress and precise shape change by low-cost, scalable methods is a long-term-desired yet challenging task. Here, conventional polymers (polyurea) and carbon nanotube (CNT) fillers are combined to fabricate reinforced composite fibers with exceptional actuation performance, by a wet-spinning method amenable for continuous production. It is found that a thermal-induced shrinkage step could obtain densified strong fibers, and the presence of CNTs effectively promotes the tensile orientation of polymer molecular chains, leading to much improved mechanical properties. Consequently, the CNT/ polyurea composite fibers exhibit stresses as high as 33 MPa within 0.36 s during thermal actuation, and stresses up to 22 MPa upon electrical stimulation enabled by the built-in conductive CNT networks. Utilizing the flexible thin fibers, various shape change behavior are also demonstrated including the conversion between different structures/curvatures, and recovery of predefined simple patterns. This high-performance composite fibers, capable of both thermal and electrical actuation and produced by low-cost materials and fabrication process, may find many potential applications in wearable devices, robotics, and biomedical areas.

15.
Front Pharmacol ; 15: 1417399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119607

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.

16.
Int J Biol Macromol ; 277(Pt 3): 134310, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094863

RESUMEN

In unmanned aircraft applications, electromagnetic wave (EMW) absorbers suffer from defects in narrow absorption bands and poor mechanical properties. To solve the problems, a lightweight multilayer stealth structure with wide broadband absorption performance and excellent mechanical properties was designed and prepared by adjusting microscopically the number of multi-walled carbon nanotubes (MWCNT) and modulating macroscopically the thickness-matching relationship of the structure to promote the absorption of EMW synergistically. Under the MWCNT of 30 wt% and the depletion layer with the thickness of 0.2 mm, the effective absorption bandwidth (EAB) covers the entire Ku-band while maintaining a minimum reflection loss (RL) of -15 dB. Besides, the radar cross-sectional area attenuation is as high as 23.1 dBm2, as well as the mechanical properties of the radar absorbing structures (RAS) were improved significantly due to the reducing structural density from balsa wood and the enhancement effect of glass fiber mats (GFM). The study constructed balsa-based RAS with excellent EMW absorbing and mechanical properties from both micro-nano scale and macro-structure, providing a research route for designing high-performance and lightweight stealth structures.

17.
Adv Mater ; : e2404554, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104286

RESUMEN

Semiconducting single-walled carbon nanotubes (SWCNTs) are a promising thermoelectric material with high power factors after chemical p- or n-doping. Understanding the impact of dopant counterions on charge transport and thermoelectric properties of nanotube networks is essential to further optimize doping methods and to develop better dopants. This work utilizes ion-exchange doping to systematically vary the size of counterions in thin films of small and large diameter, polymer-sorted semiconducting SWCNTs with AuCl3 as the initial p-dopant and investigates the impact of ion size on conductivity, Seebeck coefficients, and power factors. Larger anions are found to correlate with higher electrical conductivities and improved doping stability, while no significant effect on the power factors is found. Importantly, the effect of counterion size on the thermoelectric properties of dense SWCNT networks is not obscured by morphological changes upon doping. The observed trends of carrier mobilities and Seebeck coefficients can be explained by a random resistor model for the nanotube network that accounts for overlapping Coulomb potentials leading to the formation of an impurity band whose depth depends on the carrier density and counterion size. These insights can be applied more broadly to understand the thermoelectric properties of doped percolating disordered systems, including semiconducting polymers.

18.
Sci Rep ; 14(1): 19882, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191833

RESUMEN

This research explores the feasibility of using a nanocomposite from multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) for thermal engineering applications. The hybrid nanocomposites were suspended in water at various volumetric concentrations. Their heat transfer and pressure drop characteristics were analyzed using computational fluid dynamics and artificial neural network models. The study examined flow regimes with Reynolds numbers between 5000 and 17,000, inlet fluid temperatures ranging from 293.15 to 333.15 K, and concentrations from 0.01 to 0.2% by volume. The numerical results were validated against empirical correlations for heat transfer coefficient and pressure drop, showing an acceptable average error. The findings revealed that the heat transfer coefficient and pressure drop increased significantly with higher inlet temperatures and concentrations, achieving approximately 45.22% and 452.90%, respectively. These results suggested that MWCNTs-GNPs nanocomposites hold promise for enhancing the performance of thermal systems, offering a potential pathway for developing and optimizing advanced thermal engineering solutions.

19.
Sensors (Basel) ; 24(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123940

RESUMEN

Physical therapy is often essential for complete recovery after injury. However, a significant population of patients fail to adhere to prescribed exercise regimens. Lack of motivation and inconsistent in-person visits to physical therapy are major contributing factors to suboptimal exercise adherence, slowing the recovery process. With the advancement of virtual reality (VR), researchers have developed remote virtual rehabilitation systems with sensors such as inertial measurement units. A functional garment with an integrated wearable sensor can also be used for real-time sensory feedback in VR-based therapeutic exercise and offers affordable remote rehabilitation to patients. Sensors integrated into wearable garments offer the potential for a quantitative range of motion measurements during VR rehabilitation. In this research, we developed and validated a carbon nanocomposite-coated knit fabric-based sensor worn on a compression sleeve that can be integrated with upper-extremity virtual rehabilitation systems. The sensor was created by coating a commercially available weft knitted fabric consisting of polyester, nylon, and elastane fibers. A thin carbon nanotube composite coating applied to the fibers makes the fabric electrically conductive and functions as a piezoresistive sensor. The nanocomposite sensor, which is soft to the touch and breathable, demonstrated high sensitivity to stretching deformations, with an average gauge factor of ~35 in the warp direction of the fabric sensor. Multiple tests are performed with a Kinarm end point robot to validate the sensor for repeatable response with a change in elbow joint angle. A task was also created in a VR environment and replicated by the Kinarm. The wearable sensor can measure the change in elbow angle with more than 90% accuracy while performing these tasks, and the sensor shows a proportional resistance change with varying joint angles while performing different exercises. The potential use of wearable sensors in at-home virtual therapy/exercise was demonstrated using a Meta Quest 2 VR system with a virtual exercise program to show the potential for at-home measurements.


Asunto(s)
Articulación del Codo , Nanocompuestos , Realidad Virtual , Dispositivos Electrónicos Vestibles , Humanos , Nanocompuestos/química , Articulación del Codo/fisiología , Robótica/instrumentación , Nanotubos de Carbono/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Rango del Movimiento Articular/fisiología , Carbono/química
20.
Nanomaterials (Basel) ; 14(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39195384

RESUMEN

Novel fibrous cellulosic substrates impregnated with meta-polybenzimidazole (PBI)-stabilized carbon nanotubes/zinc oxide with different weight content of ZnO and with the use of dimethylacetamide as dispersant media. The pristine ZnO nanoparticle powder was prepared by plant extract-mediated synthesis using Vaccinium vitis-idaea L. The green synthesized ZnO possesses an average crystallite size of 15 nm. The formation of agglomerates from ZnO NPs with size 250 nm-350 nm in the m-PBI@CNTs/ZnO was determined. The prepared materials were investigated by PXRD analysis, XPS, SEM, EDS, AFM, and TEM in order to establish the phase and surface composition, structure, and morphology of the hybrids. The potential of the synthesized hybrid composites to degrade methylene blue (MB) dye as a model contaminant in aqueous solutions under UV illumination was studied. The photocatalytic results show that in the course of the photocatalytic reaction, the m-PBI@CNTs/ZnO 1:3 photocatalyst leads to the highest degree of degradation of the methylene blue dye (67%) in comparison with the other two studied m-PBI@CNTs/ZnO 1:1 and 1:2 composites (48% and 41%). The antibacterial activity of ZnO nanoparticles and the hybrid CNT materials was evaluated by the RMDA and the dynamic contact method, respectively. The profound antibacterial effect of the m-PBI@CNTs/ZnO hybrids was monitored for 120 h of exposition in dark and UV illumination regimes. The photocatalytic property of ZnO nanoparticles significantly shortens the time for bactericidal action of the composites in both regimes. The m-PBI@CNTs/ZnO 1:2 combination achieved complete elimination of 5.105 CFU/mL E. coli cells after 10 min of UV irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA