Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499116

RESUMEN

Alzheimer's disease (AD) is a progressive and complex neurodegenerative disease. Acetylcholinesterase inhibitors (AChEIs) are a major class of drugs used in AD therapy. ROCK2, another promising target for AD, has been associated with the induction of neurogenesis via PTEN/AKT. This study aimed to characterize the therapeutic potential of a novel donepezil-tacrine hybrid compound (TA8Amino) to inhibit AChE and ROCK2 protein, leading to the induction of neurogenesis in SH-SY5Y cells. Experiments were carried out with undifferentiated and neuron-differentiated SH-SY5Y cells submitted to treatments with AChEIs (TA8Amino, donepezil, and tacrine) for 24 h or 7 days. TA8Amino was capable of inhibiting AChE at non-cytotoxic concentrations after 24 h. Following neuronal differentiation for 7 days, TA8Amino and donepezil increased the percentage of neurodifferentiated cells and the length of neurites, as confirmed by ß-III-tubulin and MAP2 protein expression. TA8Amino was found to participate in the activation of PTEN/AKT signaling. In silico analysis showed that TA8Amino can stably bind to the active site of ROCK2, and in vitro experiments in SH-SY5Y cells demonstrate that TA8Amino significantly reduced the expression of ROCK2 protein, contrasting with donepezil and tacrine. Therefore, these results provide important information on the mechanism underlying the action of TA8Amino with regard to multi-target activities.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Neuroblastoma , Enfermedades Neurodegenerativas , Quinasas Asociadas a rho , Humanos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/química , Donepezilo/farmacología , Neuroblastoma/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fosfohidrolasa PTEN , Quinasas Asociadas a rho/antagonistas & inhibidores , Tacrina/química
2.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011307

RESUMEN

Propolis, also known as bee-glue, is a resinous substance produced by honeybees from materials collected from plants they visit. It contains mixtures of wax and bee enzymes and is used by bees as a building material in their hives and by humans for different purposes in traditional healthcare practices. Although the composition of propolis has been shown to depend on its geographic location, climatic zone, and local flora; two largely studied types of propolis: (i) New Zealand and (ii) Brazilian green propolis have been shown to possess Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC) as the main bioactive constituents, respectively. We have earlier reported that CAPE and ARC possess anticancer activities, mediated by abrogation of mortalin-p53 complex and reactivation of p53 tumor suppressor function. Like CAPE, Artepillin C (ARC) and the supercritical extract of green propolis (GPSE) showed potent anticancer activity. In this study, we recruited low doses of GPSE and ARC (that did not affect either cancer cell proliferation or migration) to investigate their antistress potential using in vitro cell based assays. We report that both GPSE and ARC have the capability to disaggregate metal- and heat-induced aggregated proteins. Metal-induced aggregation of GFP was reduced by fourfold in GPSE- as well as ARC-treated cells. Similarly, whereas heat-induced misfolding of luciferase protein showed 80% loss of activity, the cells treated with either GPSE or ARC showed 60-80% recovery. Furthermore, we demonstrate their pro-hypoxia (marked by the upregulation of HIF-1α) and neuro-differentiation (marked by differentiation morphology and upregulation of expression of GFAP, ß-tubulin III, and MAP2). Both GPSE and ARC also offered significant protection against oxidative stress and, hence, may be useful in the treatment of old age-related brain pathologies.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Fenilpropionatos/farmacología , Própolis/química , Própolis/farmacología , Animales , Biomarcadores , Brasil , Fraccionamiento Químico , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Fenilpropionatos/química , Extractos Vegetales , Própolis/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo
3.
J Biol Chem ; 295(26): 8808-8818, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32385110

RESUMEN

Differentiation of neuronal cells is crucial for the development and function of the nervous system. This process involves high rates of membrane expansion, during which the synthesis of membrane lipids must be tightly regulated. In this work, using a variety of molecular and biochemical assays and approaches, including immunofluorescence microscopy and FRET analyses, we demonstrate that the proto-oncogene c-Fos (c-Fos) activates cytoplasmic lipid synthesis in the central nervous system and thereby supports neuronal differentiation. Specifically, in hippocampal primary cultures, blocking c-Fos expression or its activity impairs neuronal differentiation. When examining its subcellular localization, we found that c-Fos co-localizes with endoplasmic reticulum markers and strongly interacts with lipid-synthesizing enzymes, whose activities were markedly increased in vitro in the presence of recombinant c-Fos. Of note, the expression of c-Fos dominant-negative variants capable of blocking its lipid synthesis-activating activity impaired neuronal differentiation. Moreover, using an in utero electroporation model, we observed that neurons with blocked c-Fos expression or lacking its AP-1-independent activity fail to initiate cortical development. These results highlight the importance of c-Fos-mediated activation of lipid synthesis for proper nervous system development.


Asunto(s)
Corteza Cerebral/embriología , Neurogénesis , Neuronas/citología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Wistar
4.
Biomolecules ; 9(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717249

RESUMEN

Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Inmunofilinas/metabolismo , Animales , Proteínas HSP90 de Choque Térmico/química , Humanos , Inmunofilinas/química , Modelos Moleculares , Estructura Molecular , Unión Proteica
5.
Dev Neurobiol ; 77(11): 1308-1320, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28719101

RESUMEN

The olfactory epithelium (OE) has the remarkable capability to constantly replace olfactory receptor neurons (ORNs) due to the presence of neural stem cells (NSCs). For this reason, the OE provides an excellent model to study neurogenesis and neuronal differentiation. In the present work, we induced neuronal degeneration in the OE of Xenopus laevis larvae by bilateral axotomy of the olfactory nerves. We found that axotomy induces specific- neuronal death through apoptosis between 24 and 48h post-injury. In concordance, there was a progressive decrease of the mature-ORN marker OMP until it was completely absent 72h post-injury. On the other hand, neurogenesis was evident 48h post-injury by an increase in the number of proliferating basal cells as well as NCAM-180- GAP-43+ immature neurons. Mature ORNs were replenished 21 days post-injury and the olfactory function was partially recovered, indicating that new ORNs were integrated into the olfactory bulb glomeruli. Throughout the regenerative process no changes in the expression pattern of the neurotrophin Brain Derivate Neurotrophic Factor were observed. Taken together, this work provides a sequential analysis of the neurodegenerative and subsequent regenerative processes that take place in the OE following axotomy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1308-1320, 2017.


Asunto(s)
Axotomía , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Mucosa Olfatoria/patología , Traumatismos del Nervio Olfatorio/patología , Regeneración/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Caspasa 3/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular , Proteína GAP-43/metabolismo , Regulación de la Expresión Génica/fisiología , Queratina-2/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteína Marcadora Olfativa/metabolismo , Traumatismos del Nervio Olfatorio/etiología , Recuperación de la Función/fisiología , Olfato/fisiología , Factores de Tiempo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA