Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
J Neural Eng ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197480

RESUMEN

OBJECTIVE: Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated. APPROACH: Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues. MAIN RESULTS: In vitro analyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. SIGNIFICANCE: This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.

2.
Biology (Basel) ; 13(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39056709

RESUMEN

BACKGROUND: The effects of collagen-induced arthritis (CIA), a model of systemic inflammation, on brain regional molecular markers associated with neurological disorders are uncertain. OBJECTIVE: This study investigated the brain regional molecular changes in markers associated with inflammation and neuronal dysfunction in a CIA model. METHODS: Fourteen male Sprague Dawley rats were divided into control (n = 5) or CIA (n = 9) groups. 10 weeks after CIA induction, brain tissue was collected. Brain regional mRNA expression of inflammatory markers (IL-1ß and IL-6), apoptotic markers (BAX and Bcl2) and neurotrophic factors (BDNF, CREB and TrkB) was determined. Monoamine distribution and abundance in different brain regions were determine by mass spectrometry imaging (MSI). RESULTS: Neuroinflammation was confirmed in the CIA group by increased IL-ß mRNA expression, concurrent with an increased BAX/Bcl2 ratio. The mRNA expression of CREB was increased in the midbrain and hippocampus while BDNF was increased and TrkB was decreased across all brain regions in CIA compared to control animals. Serotonin was decreased in the midbrain and hippocampus while dopamine was decreased in the striatum of CIA rats, compared to controls. CONCLUSION: CIA resulted in neuroinflammation concurrent with an apoptotic state and aberrant expression of neurotrophic factors and monoamines in the brain, suggestive of neurodegeneration.

3.
Diagnostics (Basel) ; 14(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39061654

RESUMEN

Perineural invasion (PNI), the neoplastic invasion of nerves, is an often overlooked pathological phenomenon in cervical cancer that is associated with poor clinical outcomes. The occurrence of PNI in cervical cancer patients has limited the promotion of Type C1 surgery. Preoperative prediction of the PNI can help identify suitable patients for Type C1 surgery. However, there is a lack of appropriate preoperative diagnostic methods for PNI, and its pathogenesis remains largely unknown. Here, we dissect the neural innervation of the cervix, analyze the molecular mechanisms underlying the occurrence of PNI, and explore suitable preoperative diagnostic methods for PNI to advance the identification and treatment of this ominous cancer phenotype.

4.
Basic Clin Pharmacol Toxicol ; 135(3): 271-284, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973499

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopamine neurons and aberrant deposits of alpha-synuclein (α-syn) in the brain. The symptomatic treatment is started after the onset of motor manifestations in a late stage of the disease. Preclinical studies with neurotrophic factors (NTFs) show promising results of disease-modifying neuroprotective or even neurorestorative effects. Four NTFs have entered phase I-II clinical trials with inconclusive outcomes. This is not surprising because the preclinical evidence is from acute early-stage disease models, but the clinical trials included advanced PD patients. To conclude the value of NTF therapies, clinical studies should be performed in early-stage patients with prodromal symptoms, that is, before motor manifestations. In this review, we summarize currently available diagnostic and prognostic biomarkers that could help identify at-risk patients benefiting from NTF therapies. Focus is on biochemical and imaging biomarkers, but also other modalities are discussed. Neuroimaging is the most important diagnostic tool today, but α-syn imaging is not yet viable. Modern techniques allow measuring various forms of α-syn in cerebrospinal fluid, blood, saliva, and skin. Digital biomarkers and artificial intelligence offer new means for early diagnosis and longitudinal follow-up of degenerative brain diseases.


Asunto(s)
Biomarcadores , Diagnóstico Precoz , Factores de Crecimiento Nervioso , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Biomarcadores/metabolismo , Biomarcadores/sangre , Factores de Crecimiento Nervioso/metabolismo , Animales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/líquido cefalorraquídeo , Neuroimagen/métodos
5.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920687

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Asunto(s)
Axones , Cuerpo Estriado , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Proteínas Proto-Oncogénicas c-ret , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Axones/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/citología , Ratones , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas Espinosas Medianas
6.
Biology (Basel) ; 13(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38927306

RESUMEN

The potential of Marrubium vulgare to alleviate scopolamine (Sco)-induced deficits in spatial working memory has drawn considerable scientific interest. This effect is partly attributed to its potent antioxidant and acetylcholinesterase inhibitory (AChEI) activities. This study examined the effects of M. vulgare extract, standardized to marrubiin content, on recognition memory in healthy and Sco-treated rats. Male Wistar rats (200-250 g) were divided into four groups. The extract was orally administered for 21 days and Sco (2 mg/kg) was intraperitoneally injected for 11 consecutive days. Memory performance was assessed using the novel object recognition test. Levels of acetylcholine (ACh), noradrenaline (NA), serotonin (Sero), and brain-derived neurotrophic factor (BDNF) and the phosphorylation of cAMP response element-binding protein (p-CREB) were evaluated in the cortex and hippocampus via ELISA. BDNF and CREB expression levels were assessed using RT-PCR. The results showed that M. vulgare significantly alleviated Sco-induced memory impairment, preserved cholinergic function in the hippocampus, increased NA levels in the brain, and restored pCREB expression in the cortex following Sco-induced reduction. In healthy rats, the extract upregulated BDNF, pCREB, and Bcl2 expression. Our findings indicate that the neuroprotective effects of M. vulgare may be linked to the modulation of cholinergic function, regulation of NA neurotransmission, and influence on key memory-related molecules.

7.
Brain Sci ; 14(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38928557

RESUMEN

Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.

8.
Brain Sci ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38928583

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is related to mental and somatic disorders that result in alcohol withdrawal syndrome (AWS), with 30% of AWS cases leading to life-threatening delirium tremens (DTs). Currently, studies do not support using any one biomarker in DTs. Neurotrophins affect neuromodulation, playing a role in the pathogenesis of AUD, AWS, and DTs. METHODS: This review aims to summarize experimental and clinical data related to neurotrophins and S100B in neuroplasticity, as well as neurodegeneration in the context of AUD, AWS, and DTs. This work used publications that were selected based on the protocol consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. RESULTS: The BDNF level could be a good candidate biomarker for relapse susceptibility, as it is significantly reduced during consumption and gradually increases during abstinence. GDNF influences AUD through its integral role in the function of dopaminergic neurons and ablates the return to alcohol-drinking behavior. NGF protects neurons from ethanol-induced cytotoxic damage and affects recovery from cognitive deficits after brain damage. The NT-3 level is decreased after alcohol exposure and is involved in compensatory mechanisms for cognitive decline in AUD. NT-4 affects oxidative stress, which is associated with chronic alcohol consumption. S100B is used as a biomarker of brain damage, with elevated levels in serum in AUD, and can protect 5-HT neurons from the damage caused by alcohol. CONCLUSIONS: BDNF, GDNF, NT-3, NT-4, NGF, and S100B may be valuable markers for withdrawal syndrome. In particular, the most relevant is their association with the development of delirium complications. However, there are few data concerning some neurotrophins in AWS and DTs, suggesting the need for further research.

9.
Neuroendocrinology ; : 1-13, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885623

RESUMEN

INTRODUCTION: Cancer stem cells (CSCs) shape the tumor microenvironment via neuroendocrine signaling and orchestrate drug resistance and metastasis. Cytokine antibody array demonstrated the upregulation of neurotrophin-3 (NT-3) in lung CSCs. This study aims to dissect the role of NT-3 in lung CSCs during tumor innervation. METHODS: Western blotting, quantitative reverse transcription-PCR, and flow cytometry were used to determine the expression of the NT-3 axis in lung CSCs. NT-3-knockdown and NT-3-overexpressed cells were derived lung CSCs, followed by examining the stemness gene expression, tumorsphere formation, transwell migration and invasion, drug resistance, soft agar colony formation, and in vivo tumorigenicity. Human lung cancer tissue microarray and bioinformatic databases were used to investigate the clinical relevance of NT-3 in lung cancer. RESULTS: NT-3 and its receptor tropomyosin receptor kinase C (TrkC) were augmented in lung tumorspheres. NT-3 silencing (shNT-3) suppressed the migration and anchorage-independent growth of lung cancer cells. Further, shNT-3 abolished the sphere-forming capability, chemo-drug resistance, invasion, and in vivo tumorigenicity of lung tumorspheres with a decreased expression of CSC markers. Conversely, NT-3 overexpression promoted migration and anchorage-independent growth and fueled tumorsphere formation by upregulating the expression of CSC markers. Lung cancer tissue microarray analysis revealed that NT-3 increased in patients with advanced-stage, lymphatic metastasis and positively correlated with Sox2 expression. Bioinformatic databases confirmed a co-expression of NT-3/TrkC-axis and demonstrated that NT-3, NT-3/TrkC, NT-3/Sox2, and NT-3/CD133 worsen the survival of lung cancer patients. CONCLUSION: NT-3 conferred the stemness features in lung cancer during tumor innervation, which suggests that NT-3-targeting is feasible in eradicating lung CSCs.

10.
Mol Neurobiol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856793

RESUMEN

Neurodegenerative illnesses (NDDs) like Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, spinal muscular atrophy, and Huntington's disease have demonstrated considerable potential for gene therapy as a viable therapeutic intervention. NDDs are marked by the decline of neurons, resulting in changes in both behavior and pathology within the body. Strikingly, only symptomatic management is available without a cure for the NDDs. There is an unmet need for a permanent therapeutic approach. Many studies have been going on to target the newer therapeutic molecular targets for NDDs including gene-based therapy. Gene therapy has the potential to provide therapeutic benefits to a large number of patients with NDDs by offering mechanisms including neuroprotection, neuro-restoration, and rectification of pathogenic pathways. Gene therapy is a medical approach that aims to modify the biological characteristics of living cells by controlling the expression of specific genes in certain neurological disorders. Despite being the most complex and well-protected organ in the human body, there is clinical evidence to show that it is possible to specifically target the central nervous system (CNS). This provides hope for the prospective application of gene therapy in treating NDDs in the future. There are several advanced techniques available for using viral or non-viral vectors to deliver the therapeutic gene to the afflicted region. Neurotrophic factors (NTF) in the brain are crucial for the development, differentiation, and survival of neurons in the CNS, making them important in the context of various neurological illnesses. Gene delivery of NTF has the potential to be used as a therapeutic approach for the treatment of neurological problems in the brain. This review primarily focuses on the methodologies employed for delivering the genes of different NTFs to treat neurological disorders. These techniques are currently being explored as a viable therapeutic approach for neurodegenerative diseases. The article exclusively addresses gene delivery approaches and does not cover additional therapy strategies for NDDs. Gene therapy offers a promising alternative treatment for NDDs by stimulating neuronal growth instead of solely relying on symptom relief from drugs and their associated adverse effects. It can serve as a long-lasting and advantageous treatment choice for the management of NDDs. The likelihood of developing NDDs increases with age as a result of neuronal degradation in the brain. Gene therapy is an optimal approach for promoting neuronal growth through the introduction of nerve growth factor genes.

11.
Chembiochem ; 25(16): e202400162, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38874536

RESUMEN

Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30 mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.


Asunto(s)
Benzofuranos , Modelos Animales de Enfermedad , Inflamación , Nocicepción , Animales , Ratones , Masculino , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Nocicepción/efectos de los fármacos , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/metabolismo , Analgésicos/farmacología , Analgésicos/química , Analgésicos/uso terapéutico
12.
J Mol Neurosci ; 74(2): 57, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802573

RESUMEN

Upon injury to the CNS, astrocytes undergo morphological and functional changes commonly referred to as astrocyte reactivity. Notably, these reactive processes include altered expression of factors that control immune processes and neuronal survival, as well as increased expression of the CXCL12 receptor, CXCR7/ACKR3. We now asked whether these events are related in that the astrocytic CXCL12 system modulates immune responses and/or neuronal survival. Short-term exposure of astrocytes cultured from the postnatal rat cortex to CXCL12 prominently increased the expression of serpine1/PAI1 on the mRNA level, but showed either no or only minor effects on the expression of additional reactive genes, selected from previous array studies. CXCL12-induced increases in PAI1 protein levels were only detectable in the additional presence of chemokines/cytokines, suggesting that translation of serpine1 mRNA depends on the cooperation of various factors. As expected, expression of most of the selected genes increased after acute or chronic activation of astrocytes with either LPS or a combination of IL-1ß and TNFα. CXCL12 partially attenuated expression of some of the LPS and IL-1ß/TNFα-induced genes under acute conditions, in particular those encoding CXCL9, CXCL10, CXCL11, and CCL5. Taken together, these findings argue for the involvement of the astrocyte CXCL12 system in the control of the immune response of the injured CNS, where it may control distinct steps.


Asunto(s)
Astrocitos , Quimiocina CXCL12 , Inhibidor 1 de Activador Plasminogénico , Animales , Ratas , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética
13.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38716884

RESUMEN

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Asunto(s)
Adenosina Trifosfato , Factor de Crecimiento Nervioso , Unión Proteica , Factor de Crecimiento Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Animales , Precursores de Proteínas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Ligandos , Sitios de Unión
14.
Lasers Med Sci ; 39(1): 119, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679671

RESUMEN

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Terapia por Luz de Baja Intensidad , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Complejo Vitamínico B , Animales , Ratas , Regeneración Nerviosa/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Masculino , Laminina/metabolismo , Traumatismos del Nervio Facial/radioterapia , Traumatismos del Nervio Facial/terapia , Ratas Wistar , Proteína Básica de Mielina/metabolismo
15.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559020

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

16.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583640

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Humanos , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutación
17.
J Biochem Mol Toxicol ; 38(4): e23638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613466

RESUMEN

The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.


Asunto(s)
Neuralgia , Neoplasias Pancreáticas , Humanos , Sustancia P , Neuralgia/etiología , Páncreas , Neoplasias Pancreáticas/complicaciones , Fibroblastos , Microambiente Tumoral
18.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612708

RESUMEN

Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.


Asunto(s)
Melanoma , Melatonina , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Citoplasma , Factores de Crecimiento Nervioso
19.
Int J Neurosci ; : 1-7, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641960

RESUMEN

OBJECTIVE: To investigate the effects of combined acupuncture anesthesia and ropivacaine on postoperative analgesia and neuro-related factors in patients undergoing chest surgery. METHODS: The analgesic drug dosage, postoperative PCIA pressing times, VAS scores at rest and during activity at 6 h (T1), 12 h (T2), 18 h (T3), and 24 h (T4) postoperatively. RESULTS: The analgesic drug dosage and postoperative PCIA pressing times were lower in the observation group than in the control group (p < 0.05). The VAS scores at T1-T4 postoperatively were lower in the observation group than in the control group (p < 0.05). The SAS scores at T1-T4 postoperatively were lower in the observation group than in the control group (p < 0.05). The levels of IL-6 and IL-10 on postoperative day 1 were higher than those on preoperative day 1 in both groups, with a smaller change in the observation group (p < 0.05). The levels of S100ß protein on postoperative day 1 were higher than those on preoperative day 1 in both groups, while the BDNF levels were lower, with a smaller change in the observation group (p < 0.05). There was no significant difference in the incidence of adverse reactions between the control group (11.36%) and the observation group (15.56%) (p > 0.05). CONCLUSION: Combined acupuncture anesthesia and ropivacaine can effectively improve postoperative analgesia and agitation in patients undergoing chest surgery, reduce the dosage of analgesic drugs, regulate the levels of inflammatory factors and neurotrophic factors in patients, and do not increase the risk of adverse reactions related to patients.

20.
Res Sq ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562722

RESUMEN

Background: The choroid plexus (CP) is an understudied tissue in the central nervous system (CNS), primarily implicated in cerebrospinal fluid (CSF) production. Additionally, CP produces numerous neurotrophic factors (NTF), which circulate to different regions of the brain. Regulation of NTF in the CP during natural aging has yet to be discovered. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and water channel protein Aquaporin (AQP1). Methods: We used male and female mice for our study. We analyzed neurotrophic factor gene expression patterns using quantitative and digital droplet PCR at three different time points: mature adult, middle-aged, and aged. Additionally, we used immunohistochemical analysis (IHC) to evaluate in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, plectin. Results: Aging significantly altered the NTF's gene expression in the CP Brain-derived neurotrophic factor (BDNF), Midkine, VGF, Insulin-like growth factor (IGF1), IGF2, klotho, Erythropoietin, and its receptor were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression is unchanged in the aged CP while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2, and CLAUDIN5 were reduced in aged mice. Conclusions: Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...