Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.006
Filtrar
1.
J Environ Sci (China) ; 147: 571-581, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003072

RESUMEN

Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).


Asunto(s)
Oro , Metales Pesados , Minería , Nitritos , Microbiología del Suelo , Contaminantes del Suelo , Metales Pesados/toxicidad , Ciclo del Nitrógeno , Desnitrificación , Nitrógeno , Suelo/química
2.
ACS Sens ; 9(7): 3680-3688, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38958469

RESUMEN

As one of the common carriers of biological information, along with human urine specimens and blood, exhaled breath condensate (EBC) carries reliable and rich information about the body's metabolism to track human physiological normal/abnormal states and environmental exposures. What is more, EBC has gained extensive attention because of the convenient and nondestructive sampling. Facemasks, which act as a physical filter barrier between human exhaled breath and inhaled substances from the external environment, are safe, noninvasive, and economic devices for direct sampling of human exhaled breath and inhaled substances. Inspired by the ability of fog collection of Namib desert beetle, a strategy for in situ collecting and detecting EBC with surface-enhanced Raman scattering is illustrated. Based on the intrinsic and unique wettability differences between the squares and the surrounding area of the pattern on facemasks, the hydrophilic squares can capture exhaled droplets and spontaneously enrich the analytes and silver nanocubes (AgNCs), resulting in good repeatability in situ detection. Using R6G as the probe molecule, the minimal detectable concentration can reach as low as 10-16 M, and the relative standard deviation is less than 7%. This proves that this strategy can achieve high detection sensitivity and high detection repeatability. Meanwhile, this strategy is applicable for portable nitrite analysis in EBC and may provide an inspiration for monitoring other biomarkers in EBC.


Asunto(s)
Pruebas Respiratorias , Espiración , Nitritos , Plata , Espectrometría Raman , Humectabilidad , Espectrometría Raman/métodos , Humanos , Plata/química , Nitritos/análisis , Nitritos/orina , Pruebas Respiratorias/métodos , Máscaras , Nanopartículas del Metal/química , Animales , Escarabajos/química
3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39001026

RESUMEN

In the realm of electrochemical nitrite detection, the potent oxidizing nature of nitrite typically necessitates operation at high detection potentials. However, this study introduces a novel approach to address this challenge by developing a highly sensitive electrochemical sensor with a low reduction detection potential. Specifically, a copper metal nanosheet/carbon paper sensitive electrode (Cu/CP) was fabricated using a one-step electrodeposition method, leveraging the catalytic reduction properties of copper's high occupancy d-orbital. The Cu/CP sensor exhibited remarkable performance in nitrite detection, featuring a low detection potential of -0.05 V vs. Hg/HgO, a wide linear range of 10~1000 µM, an impressive detection limit of 0.079 µM (S/N = 3), and a high sensitivity of 2140 µA mM-1cm-2. These findings underscore the efficacy of electrochemical nitrite detection through catalytic reduction as a means to reduce the operational voltage of the sensor. By showcasing the successful implementation of this strategy, this work sets a valuable precedent for the advancement of electrochemical low-potential nitrite detection methodologies.

4.
Food Sci Anim Resour ; 44(4): 849-860, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974733

RESUMEN

The use of natural ingredients in meat processing has recently gained considerable interest, as consumers are increasingly attracted to clean-label meat products. However, limited research has been conducted on the use of natural substitutes for synthetic phosphates in the production of clean-label meat products. Therefore, this study aimed to explore the potential of oyster shell powder as a substitute for synthetic phosphates in pork patties cured with Chinese cabbage or radish powders. Four different groups of patties were prepared using a combination of 0.3% or 0.6% oyster shell powder and 0.4% Chinese cabbage or radish powder, respectively. These were compared with a positive control group that contained added nitrite, phosphate, and ascorbate and a negative control group without these synthetic ingredients. The results showed that patties treated with oyster shell powder had lower (p<0.05) cooking loss, thickness and diameter shrinkage, and lipid oxidation than the negative control but had lower (p<0.05) residual nitrite content and curing efficiency than the positive control. However, the use of 0.6% oyster shell powder adversely affected the curing process, resulting in a decreased curing efficiency. The impact of the vegetable powder types tested in this study on the quality attributes of the cured pork patties was negligible. Consequently, this study suggests that 0.3% oyster shell powder could serve as a suitable replacement for synthetic phosphate in pork patties cured with Chinese cabbage or radish powders. Further research on the microbiological safety and sensory evaluation of clean-label patties during storage is required for practical applications.

5.
J Nutr ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019159

RESUMEN

BACKGROUND: Green leafy vegetables (GLV) contain inorganic nitrate, an anion with potential prebiotic effects on the oral microbiome. However, it remains unclear whether GLV and pharmacological supplementation (potassium nitrate: PN) with a nitrate salt induce similar effects on the oral microbiome. OBJECTIVES: This study aimed to compare the effect of GLV with PN supplementation on the oral microbiome composition and salivary biomarkers in individuals with high blood pressure (BP). METHODS: Seventy individuals were randomly allocated to three different groups to follow a 5-week dietary intervention. Group 1 consumed 300 mg/day of nitrate in form of GLV. Group 2 consumed pills with 300 mg/day of PN and low-nitrate vegetables. Group 3 consumed pills with potassium chloride (placebo: PLAC) and low-nitrate vegetables. The oral microbiome composition and salivary biomarkers of oral health were analyzed before and after the dietary intervention. RESULTS: The GLV and PN groups showed similar microbial changes, probably nitrate-dependent, including an increase in the abundance of Neisseria, Capnocytophaga, Campylobacter species, and a decrease in Veillonella, Megasphaera, Actinomyces and Eubacterium species after the treatment. Increased abundance of Rothia species, and reduced abundance of Streptococcus, Prevotella, Actinomyces and Mogibacterium species were observed in the GLV group, which could be nitrate-independent. GLV and PN treatments increased salivary pH, but only GLV treatment showed an increase in the salivary buffering capacity and a reduction of lactate. CONCLUSION: The combination of nitrate-dependent and nitrate-independent microbial changes in the GLV group have a stronger effect to potentially improve oral health biomarkers compared to PN.

6.
Food Chem ; 459: 140353, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024884

RESUMEN

This study presents a facial and quick electrochemical sensor platform that offers remarkable water and food safety applications. The present work represents a study of the synthesis and characterization for efficient cerium vanadate (CeVO4) with a functionalized carbon nanofiber (f-CNF) decorated electrode, which is a highly effective electrode modifier for sensitive nitrite detection. The CeVO4 nanoparticles were synthesized using the facial hydrothermal technique, and a composite (CeVO4@f-CNF) was prepared using the sonication method. Afterward, the produced materials were confirmed with spectroscopic and microscopic analysis. The electrochemical behavior of nitrite was studied through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV analysis depicts an excellent linear range of 0.1-1033 µM and a promising detection limit of 0.004 µM for the proposed electrode. The CeVO4@f-CNF electrode was applied to detect nitrite in water and meat samples. The proposed electrochemical sensor attributes the significant results towards the detection of nitrite.

7.
Fish Physiol Biochem ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026114

RESUMEN

Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO3-) and nitrite (NO2-), and their cardiovascular development were investigated. Exposure to 10 mg/L NO3-N and 1 and 10 mg/L NO2-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO3-N and 1 mg/L NO2-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.

8.
J Pharm Biomed Anal ; 248: 116330, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981329

RESUMEN

Due to their potential adverse health effects, some N-nitrosamines in drug products are strictly regulated with very low maximum daily intake limits. Nitrosamines can be formed from the reaction of nitrite and secondary or tertiary amines when both species co-exist in the drug synthesis or formulation process. One key strategy to mitigate nitrosamine risk in drugs is to select low-nitrite containing pharma excipients for formulation. It is necessary to develop a sensitive method for trace nitrite determination in pharma excipients as it enables drug producers to study nitrosamine formation kinetics and select excipient suppliers. This study details the development and validation of a two-dimensional ion chromatography mass spectrometry (2D-IC/MS) method for trace nitrite determination in hydroxypropyl methylcellulose (HPMC), one of the most important pharmaceutical excipients used in many drug formulations. The 2D-IC system was operated in heart-cutting mode with a concentrator column coupling the two dimensions. A standard bore anion-exchange column was used in the first dimension (1D) to enable a large volume injection for increased sensitivity and provide improved resolution between nitrite and the interfering chloride peak. A high efficiency microbore anion-exchange column with different selectivity was used in the second dimension (2D) to resolve nitrite from other interfering species. The use of 2D-IC resulted in significantly improved resolution, solving the sensitivity loss issue due to ion suppression from an otherwise 1D separation. MS detection with selective ion monitoring and isotope labeled nitrite internal standard further improve the method specificity, accuracy, and ruggedness, as compared with conductivity detection. For trace determination, it is also extremely important to have a clean blank. For this purpose, a novel cleaning procedure using a strong anion wash was developed to remove nitrite contamination from labware. The optimized method was validated with linearity of nitrite in the concentration range of 18.5-5005.8 ng/g having a regression coefficient of >0.9999, precision with RSD at 3.5-10.1 % and recovery of 90.5-102.4 %. The limit of detection and limit of quantitation were 8.9 and 29.6 ng/g relative to the HPMC sample, or equivalent to 89 and 296 pg/g in the sample solution, respectively.


Asunto(s)
Derivados de la Hipromelosa , Nitritos , Nitritos/análisis , Derivados de la Hipromelosa/química , Cromatografía por Intercambio Iónico/métodos , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Excipientes/química , Excipientes/análisis , Nitrosaminas/análisis , Nitrosaminas/química , Límite de Detección
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124728, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38955070

RESUMEN

A spectrophotometric method for the quantitative determination of nitrite was developed, based on the radical nitration of indopolycarbocyanine dyes in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The rate of the reaction of the studied dyes with nitrite increases with the lengthening of the polymethine chain and the presence of hydrophilic sulfo groups in the side chain of the dye. TEMPO acts as a co-reagent, significantly accelerating the reaction rate and increasing the sensitivity of nitrite determination. The proposed reaction mechanism is supported by spectrophotometric and HPLC/MS studies. For Ind2 (tetramethine indocarbocyanine cationic dye), the limit of detection for nitrite is 0.50 µM within a linearity range of 1-13 µM. The developed method is sensitive, with a LOD 130 times lower than the maximum contaminant level (MCL) of nitrite in drinking water (65 µM), as specified by the WHO. The method is of low-toxicity and good selectivity, as the determination of nitrite is not significantly affected by the main components of water. The method was successfully applied for the analysis of nitrite in natural and bottled water.

10.
Chemistry ; : e202402295, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985519

RESUMEN

Nitrite (NO2-) serves as a pool of nitric oxide (NO) in biological systems under hypoxic conditions, and it is transformed to NO by nitrite reductase (NiR) enzyme in the presence of acid. However, NO synthases generate NO in normoxic conditions. Previously, acid-induced NO2- reduction chemistry was modeled on mono-metallic 3d-metals, generating metal-nitrosyls or NO(g) with H2O or H2O2 products. Herein, to understand the relative potency of a bimetallic system, we report the acid-induced reductive conversion of η2-bound NO2- to NO on CuII-CoII centers of a hetero-bimetallic CuII­nitrito-CoII complex, [(LN8H)CuII­NO2-­CoII]3+ (CuII-NO2--CoII, 2) bearing an octadentate N8-cryptand ligand (LN8H). The CuII-NO2--CoII generates [CuII(LN8H)CoII]4+ (1) upon reaction with one equiv. acid (HClO4, H+ ions source) with NO(g) via a presumed transient nitrousacid (ONOH) intermediate species. Likewise, this NO2- reduction was found to form H2O, which is believed to be from the decomposition of H2O2, an intermediate species. In addition, complex 2, in the presence of more than one equiv. H+ ions also showed the formation of NO(g) with H2O. Mechanistic investigations, using 15N-labeled-15NO2-, 18O-labeled-18O14N16O- and 2H-labeled-DClO4 (D+ source), revealed that the N-atom and O-atom in the 14/15NO and 14N18O gases are derived from NO2- ligand and H-atom in H2O derived from H+-source, respectively.

11.
Aquat Toxicol ; 273: 107015, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38996482

RESUMEN

Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.

12.
Talanta ; 278: 126527, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38996562

RESUMEN

As is well known, excessive nitrite can seriously pollute the environment and can harm human health. Although existing methods can be used to determine nitrite content, they still have some drawbacks, such as relatively complicated operation and expensive equipment. Herein, a hand-held sensing platform (HSP) for NO2- determination was developed. First, ammonia-rich nitrogen-doped carbon dots with orange-yellow emission were designed and synthesised, which were suitable as fluorescent probes because of their good optical properties and stability. Then, the HSP based on fluorescence using photoelectric conversion technology was designed and manufactured using three-dimensional printing technology. Under optimum conditions, the voltage (V/V0) of the proposed HSP showed good linearity for NO2- detection in the range of 10-500 µM, with a detection limit of 1.95 µM. This portable sensor showed good stability, accuracy and reliability in detecting actual water and meat samples, which may ensure food safety in practical applications. Moreover, the HSP is compact, portable and easily assembled and is suitable for on-site real-time detection, which shows great application potential and prospects.

13.
Free Radic Biol Med ; 222: 519-530, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972612

RESUMEN

BACKGROUND: Vascular oxidative stress and low-grade inflammation are important in the pathology of cardiovascular disorders, including hypertension. Cell culture and animal studies suggest that inorganic dietary nitrate may attenuate oxidative stress and inflammation through nitric oxide (NO), and there is a need to investigate whether this translates to humans. AIM: In this randomised, placebo-controlled crossover study, by measuring a combination of multiple blood biomarkers, we evaluated whether previously reported benefits of dietary nitrate translate to a reduced oxidative stress and an improved inflammation status in 15 men and women (age range: 56-71 years) with treated hypertension. METHODS: We investigated the effects of a single ∼400 mg-dose of nitrate at 3 h post-ingestion (3H POST) and the daily consumption of 2 × âˆ¼400 mg of nitrate over 4 weeks (4WK POST), through nitrate-rich versus nitrate-depleted (placebo) beetroot juice. Measurements included plasma nitrate and nitrite (NOx), oxidised low-density lipoprotein (oxLDL), F2-isoprostanes, protein carbonyls, oxidised (GSSG) and reduced glutathione (GSH); and serum high-sensitive C-reactive protein (hsCRP), chemokines, cytokines, and adhesion molecules. Flow cytometry was used to assess the relative proportion of blood monocyte subsets. RESULTS: At 4WK POST nitrate intervention, the oxLDL/NOx ratio decreased (mainly due to increases in plasma nitrate and nitrite) and the GSH/GSSG ratio (a sensitive biomarker for alterations in the redox status) increased, compared with placebo (for both ratios P < 0.01). The relative proportion of classical (CD14+CD16-) monocytes decreased at 4WK POST for placebo compared to nitrate intervention (P < 0.05). Other oxidative stress and inflammatory markers were not altered by increased nitrate intake relative to placebo. CONCLUSIONS: The data from this study point toward a subtle alteration in the redox balance toward a less pro-oxidative profile by a regular intake of inorganic nitrate from plant foods. CLINICAL TRIAL REGISTRY NUMBER: NCT04584372 (ClinicialTrials.gov).

14.
Environ Monit Assess ; 196(8): 726, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995468

RESUMEN

The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.


Asunto(s)
Reactores Biológicos , Desnitrificación , Fermentación , Nitrificación , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Fenol/metabolismo , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental
15.
Talanta ; 279: 126582, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39053357

RESUMEN

A new microfluidic thread-based analytical device (µTAD) for nitrate and nitrite determination in food samples was developed. The cotton thread substrate was coated with nanosilica to increase its hydrophilicity and stability, and polylactic acid was applied to one end of the nanosilica-coated thread to constrain the fluid flow along the thread in one direction. Quantification of nitrate and nitrite was based on the modified Griess reaction, using sulfanilamide and N-(1-naphthyl) ethylenediamine as chromogenic reagents, and utilizing a distance-based detection technique. Linear responses were observed in a range of 4-25 mg L-1 (R2 = 0.9991) for nitrite and a range of 8-50 mg L-1 (R2 = 0.9989) for nitrate. The limits of detection for nitrite and nitrate were 1.5 and 3.1 mg L-1, respectively. The detection time was 5 min for nitrite analysis, and 7 min for nitrate analysis. The new method demonstrated good precision, accuracy, selectivity, and stability. The performance of the proposed µTAD for nitrite and nitrate determination in real food samples was comparable to that of the conventional UV-Vis spectrophotometric method. The proposed µTAD could serve as a simple, low-cost, and portable method for nitrite and nitrate detection in food samples.

16.
Toxicon ; : 108048, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053814

RESUMEN

OBJECTIVE: The goal of the present study was to examine the repeated dose 28-day oral toxicity of curcumin, anthocyanins, and sodium nitrite in Wistar rats. METHODS: For this purpose, forty-eight male Wistar rats were randomly divided into 8 groups (n = 6 each), encompassing untreated controls and experimental groups treated with curcumin, anthocyanins, and sodium nitrite. Three rats from each group were sacrificed by cervical dislocation under di-ethyl ether anesthesia after 2 and 4 weeks of therapy, respectively. Blood samples were collected for serum chemistry. All of the animals' livers, hearts, and kidneys were removed and sent for histopathological examination. RESULTS: After two weeks of inquiry, certain groups displayed higher hematological values, while others had lower values compared to the control group. AST, CK, and LDH enzyme activity were higher in groups 2-8, but urea concentrations were higher in groups 6 and 8. After four weeks, the Hb, MCH, and MCHC values in group 4 were greater, as were the WBC levels in groups 4 and 6, whereas other groups had lower MCV and WBC values. The weekly body weight gain was insignificantly different between treatment groups. Throughout the experiment, none of the animals perished. Male rats' liver, kidney, and heart underwent histopathological changes after ingesting curcumin, sodium nitrite, and anthocyanin. CONCLUSION: Based on the findings, rats were more detrimental when curcumin, sodium nitrite, and anthocyanin were ingested together than when they were consumed individually, as evidenced by histopathological abnormalities in the liver, kidneys, and heart.

17.
J Environ Manage ; 366: 121714, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032253

RESUMEN

Antibiotic shock may potentially impact the performance of promising microalgae-nitrifying bacteria consortia (MNBC) processes. This study investigated physiological behaviors of MNBC under sulfamethoxazole (SMX) shock (mg/L level) and verified a light regulating strategy for improving process performance. Results showed that SMX shock did not affect ammonium removal but caused nitrite accumulation, resulting from combined effects of excessive reactive oxidative species (ROS) production, inhibited microalgal photosynthetic activity, upregulated expressions of amoA and hao, and downregulated expression of nxrA. Moreover, high ammonium concentration aggravated nitrite accumulation and reduced ammonium removal owing to significantly reduced dissolved oxygen (DO). Increasing light intensity enhanced microalgal photo-oxygenation and promoted expressions of all nitrification-related genes, thus improving ammonium removal and alleviating nitrite accumulation. A central composite design coupled with response surface methodology (CCD-RSM) further demonstrated the negative impacts of SMX shock and high ammonium on MNBC and the effectiveness of the light regulation in maintaining stable process performance. This study provides theoretical basis for physiological responses and regulatory strategy of the MNBC process facing short-term antibiotic shock.

18.
Food Chem ; 460(Pt 1): 140395, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39047486

RESUMEN

Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2- ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 µM), high sensitivity (0.6372 µA/µM/cm2), and wide linear range (5-580 µM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.

19.
Toxics ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39058170

RESUMEN

Nitrate and nitrite have emerged as increasingly common environmental pollutants, posing significant risks to various forms of life within ecosystems. To understand their impact on the visual system of zebrafish, adult zebrafish were exposed to environmentally relevant concentrations of nitrate (10 mg/L) and nitrite (1 mg/L) for 7 days. Visual behaviors were examined using optomotor and avoidance response. The eyeballs of the zebrafish were collected for H&E staining, IHC, and qPCR. Exposure decreased visual behavior and the thickness of most retinal layers. Exposure decreased expression of pax6a, pax6b, gpx1a, and bcl2a. Exposure increased expression of esr1, esr1a, esr2b, cyp19a1b, sod1a, nos2a, casps3, and tp53, and increased retinal brain aromatase expression by IHC. Collectively, our findings demonstrate that nitrate and nitrite exposure negatively impacted the visual system of adult zebrafish, highlighting the potential hazards of these environmental pollutants on aquatic organisms.

20.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994963

RESUMEN

BACKGROUND: The aim of this study was to investigate the relationships between levels of n-3 essential polyunsaturated fatty acids (n-3 PUFAs) and stable nitric oxide (NO) metabolites in the plasma of athletes. METHODS: Highly trained cross-country skiers (males, n = 39) were examined. The fatty acid profile of the total plasma lipids was determined by gas chromatography. The plasma NO level was studied by a colorimetric method via reaction with Griess reagent. RESULTS: A widespread deficiency of essential n-3 PUFAs in the plasma of athletes (more than 80% of the subjects) was demonstrated in association with an imbalance in the levels of nitrates (NO3) and nitrites (NO2). A lower value of n-3 linolenic acid in the plasma (0.21 mol/%) was associated with a NO3 level below the normal range (n-3 C18:3 and NO3 Rs = 0.461; p = 0.003). Higher levels of n-3 eicosapentaenoic acid (0.8 mol/%) were associated with a concentration of NO2 above the normal value (n-3 C20:5 and NO2 Rs = 0.449; p = 0.004). CONCLUSION: For the first time, the participation of essential n-3 PUFAs in the nitrite-nitrate pathway of NO synthesis in highly trained skiers was demonstrated.


Asunto(s)
Atletas , Ácidos Grasos Omega-3 , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/sangre , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/sangre , Masculino , Adulto , Nitratos/metabolismo , Nitratos/sangre , Adulto Joven , Nitritos/sangre , Nitritos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...