Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064876

RESUMEN

The interplay between the human innate immune system and bacterial cell wall components is pivotal in understanding diseases such as Crohn's disease and Lyme arthritis. Lyme disease, caused by Borrelia burgdorferi, is the most prevalent tick-borne illness in the United States, with a substantial number of cases reported annually. While antibiotic treatments are generally effective, approximately 10% of Lyme disease cases develop persistent arthritis, suggesting a dysregulated host immune response. We have previously identified a link between the immunogenic B. burgdorferi peptidoglycan (PG) and Lyme arthritis and showed that this pathogen sheds significant amounts of PG fragments during growth. Here, we synthesize these PG fragments, including ornithine-containing monosaccharides and disaccharides, to mimic the unique composition of Borrelia cell walls, using reproducible and rigorous synthetic methods. This synthetic approach allows for the modular preparation of PG derivatives, providing a diverse library of well-defined fragments. These fragments will serve as valuable tools for investigating the role of PG-mediated innate immune response in Lyme disease and aid in the development of improved diagnostic methods and treatment strategies.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Borrelia burgdorferi/inmunología , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/tratamiento farmacológico , Humanos , Peptidoglicano/química , Peptidoglicano/inmunología , Pared Celular/química
2.
Chemistry ; 30(44): e202400177, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38644348

RESUMEN

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.


Asunto(s)
Carbonatos , Cesio , Oligopéptidos , Cesio/química , Carbonatos/química , Oligopéptidos/química , Espectroscopía de Resonancia Magnética , Solventes/química
3.
Tetrahedron Chem ; 4: 100033, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36276807

RESUMEN

The emergence and rapid spread of coronavirus disease 2019 (COVID-19), a potentially fatal disease, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has swiftly led to public health crisis worldwide. Hence vaccines and antiviral therapeutics are an important part of the healthcare response to combat the ongoing threat by COVID-19. Here, we report an efficient synthesis of nirmatrelvir (PF-07321332), an orally active SARS-CoV-2 main protease inhibitor.

4.
Beilstein J Org Chem ; 18: 1195-1202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36128428

RESUMEN

Herein, we present the synthesis and utilization of derivatives of 4H-benzo[b][1,4]thiazine-3-carboxylic acid. These benzothiazine compounds were assembled via the coupling of aminothiols and bromopyruvates. Oxidative dimerization of these starting materials was also observed and the corresponding benzothiazine dimers were isolated. Moreover, the coupling of benzothiazines with amino acids was realized. In doing so, an enantioselective synthesis of the nonproteinogenic amino acid 2-amino-3-propylhexanoic acid was accomplished.

5.
Chemistry ; 28(54): e202201768, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35835720

RESUMEN

The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides.


Asunto(s)
Amidas , Productos Biológicos , Amidas/química , Aminas/química , Carbodiimidas/química , Ácidos Carboxílicos/química , Indicadores y Reactivos , Yoduros , Preparaciones Farmacéuticas
6.
Chemistry ; 28(47): e202201526, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35686562

RESUMEN

Synthesis of fluorescent P-hydroxybinaphtylphosphole-oxide or -sulfide was achieved by trapping a binaphtyl dianion with methyl dichlorophosphite or P-(N,N-diethylamino)dichlorophosphine, followed by oxidation or sulfuration of the P-center. After saponification or acid hydrolysis, the P-hydroxyphospholes were coupled to peptides using the coupling agent BOP, under the conditions required for the synthesis in solution or on a solid support. This new method was illustrated by the labeling of the JMV2959, a potent antagonist of the Growth Hormone Secretagogue Receptor type 1a (GHS-R1a). The labeled conjugates were used to characterize GHSR ligands by competition assays, based on Fluorescence Resonance Energy Transfer (FRET). Such P-hydroxyphosphole-oxide or -sulfide constitute a promising new class of compact fluorophores with large Stokes shift, for labeling biomolecules by grafting through the phosphorus atom.


Asunto(s)
Péptidos , Receptores de Ghrelina , Ligandos , Óxidos , Sulfuros
7.
Chemistry ; 28(43): e202200788, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35560956

RESUMEN

The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.


Asunto(s)
Ácidos Murámicos , Peptidoglicano , Pared Celular/metabolismo , Humanos , Sustancias Macromoleculares , Ácidos Murámicos/química , Ácidos Murámicos/metabolismo , Peptidoglicano/metabolismo
8.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35457957

RESUMEN

The release of mercury into the environment has adverse effects on humans and aquatic species, even at very low concentrations. Pyrene and its derivatives have interesting fluorescence properties that can be utilized for mercury (Hg2+) ion sensing. Herein, we reported the highly selective pyrene-functionalized silica nanoparticles (Pyr-NH@SiO2 NPs) for chemosensing mercury (Hg2+) ions in a seawater sample. The Pyr-NH@SiO2 NPs were synthesized via a two-step protocol. First, a modified Stöber method was adopted to generate amino-functionalized silica nanoparticles (NH2@SiO2 NPs). Second, 1-pyrenecarboxylic acid was coupled to NH2@SiO2 NPs using a peptide coupling reaction. As-synthesized NH2@SiO2 NPs and Pyr-NH@SiO2 NPs were thoroughly investigated by 1H-NMR, FTIR, XRD, FESEM, EDS, TGA, and BET surface area analysis. The fluorescent properties were examined in deionized water under UV-light illumination. Finally, the developed Pyr-NH@SiO2 NPs were tested as a chemosensor for Hg2+ ions detection in a broad concentration range (0-50 ppm) via photoluminescence (PL) spectroscopy. The chemosensor can selectively detect Hg2+ ions in the presence of ubiquitous ions (Na+, K+, Ca2+, Mg2+, Ba2+, Ag+, and seawater samples). The quenching of fluorescence properties with Hg2+ ions (LOD: 10 ppb) indicates that Pyr-NH@SiO2 NPs can be effectively utilized as a promising chemosensor for mercury ion detection in seawater environments.

9.
Methods Mol Biol ; 2371: 43-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34596843

RESUMEN

Cyclic peptides, which often exhibit interesting biological properties, can be obtained by macrolactamization of adequately protected linear peptide chains. Because of the remarkable biological properties, methods for the efficient cyclization of peptides are of high interest. We herein describe three different protocols for the cyclization of peptides and depsipeptides via amide bond formation. These methods can, in principal, be applied to any linear peptide chain.


Asunto(s)
Péptidos Cíclicos/química , Ciclización
10.
Angew Chem Int Ed Engl ; 60(22): 12406-12412, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33621382

RESUMEN

Amino acid and peptide couplings are widely used in fields related to pharma and materials. Still, current peptide synthesis continues to rely on the use of expensive, water sensitive, and waste-generating coupling reagents, which are often prepared in multi-step sequences and used in excess. Herein is described a peptide coupling reaction design that relies mechanistically on sun-light activation of a 4-dimethylamino-pyridine-alkyl halide charge-transfer complex to generate a novel coupling reagent in situ. The resulting coupling method is rapid, does not require dry solvents or inert atmosphere, and is compatible with all the most common amino acids and protecting groups. Peptide couplings can be run on gram-scale, without the use of special equipment. This method has a significantly reduced environmental and financial footprint compared to standard peptide coupling reactions. Experimental and computational studies support the proposed mechanism.

11.
Methods Mol Biol ; 2103: 275-285, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879933

RESUMEN

The application of designer peptides in medicinal chemistry, chemical biology, and materials science has generated new interest in synthetic methods for the structural modification of amino acids. Strategies which facilitate the direct diversification of proteinogenic functional groups within unprotected peptide substrates are particularly attractive as they leverage modern solution- and solid-phase protocols-tools which are now both robust and routine-for the synthesis of native peptides. Accordingly, a recent approach to the decarboxylative functionalization of peptidic carboxylic acids, including aspartic/glutamic acid residues and α-carboxylic acids, has proven to be a promising new strategy for peptide modification. This synthetic method merges conventional strategies for the activation of carboxylic acids with transition metal-catalyzed cross-coupling chemistry to forge new C-C bonds for the late-stage introduction of valuable synthetic handles. This chapter details a step-by-step protocol for the activation and nickel-catalyzed decarboxylative alkylation of a simple peptide substrate to highlight the broad utility of this strategy for the synthesis of designer peptides.


Asunto(s)
Acoplamiento Oxidativo , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Aminoácidos/química , Ácidos Carboxílicos/química , Descarboxilación , Ligandos , Metales/química , Níquel/química , Péptidos/química
12.
J Fluor Chem ; 218: 90-98, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31061541

RESUMEN

Fluorinated peptidomimetics are valuable substrates for exploring peptide backbone conformations and for perturbing physicochemical properties of probe compounds. However, in some cases synthetic limitations restrict installation of the fluorinated peptidomimetics into the desired probe compounds. For instance, trifluoromethylalkenes have served as amide isopolar mimics, but are rarely utilized, because many standard peptide-coupling conditions promote the isomerization of the alkene to thermodynamically favored positions. To address this challenge, we report the conversion of a naturally occurring amino acid to a Tyr1-ψ/[CF3C=CH]-Gly2 dipeptide mimetic, and notably, successful peptide coupling reactions that avoid alkene isomerization. Using this strategy, we generated trifluoromethylalkene-containing Leu-enkephalin peptidomimetics in high purity and good yield. This sequence suggests that the trifluoromethylalkene peptidomimetics can be incorporated into other target molecules with appropriate optimization.

13.
Biomimetics (Basel) ; 4(1)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-31105209

RESUMEN

With the class of shock-absorbing proteins, nature created some of the most robust materials combining both mechanical strength and elasticity. Their excellent ability to dissipate energy to prevent surrounding cells from damage is an interesting property that regularly is exploited for applications in biomimetic materials. Similar to biomaterials, where mechanical stimuli are transmitted into a (bio)chemical response, mechanophoric catalysts transform mechanical energy into a chemical reaction. Force transmission is realized commonly by polymeric handles directing the applied force to the mechanophoric bond, which in turn leads to stress-induced activation of the catalyst. Therefore, shock-absorbing proteins able to take up and store mechanical energy elastically for subsequent force transduction to the labile bond seem to be perfect candidates to fulfill this task. Here, we report on the synthesis of two different latent mechanophoric copper(I) bis(N-heterocyclic carbene) complexes bearing either two carboxyl groups or two amino groups which allow conjugation reactions with either the N- or the C-terminus of amino acids or peptides. The chosen catalysts can be activated, for instance, by applying external mechanical force via ultrasound, removing one N-heterocyclic carbene (NHC) ligand. Post-modification of the mechanophoric catalysts via peptide coupling (Gly, Val) and first reactions showed that the mechanoresponsive behavior was still present after the coupling. Subsequent polycondensation of both catalysts lead to a polyamide including the Cu(I) moiety. Mechanochemical activation by ultrasound showed conversions in the copper(I)-catalyzed alkyne-azide "click" reaction (CuAAC) up to 9.9% proving the potential application for the time and spatial controlled CuAAC.

14.
Front Chem ; 7: 173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984743

RESUMEN

Peptide coupling with minimal protection is one of the desired methods for the synthesis of peptides and proteins. To achieve regioselective amide bond formation, side chain protection is often essential; however, protecting groups potentially diminish peptide solubility and render the polar polyamide chain amphipathic due to their apolar nature. In this manuscript, we describe a new protecting group, N,N-dimethylaminoxy carbonyl (Dmaoc), and its use in peptide coupling reactions. The Dmaoc group has a relatively polar character compared to the Boc group, which is a conventional protecting group for the N ε-amine of Lys residues. This polar protecting group is removable by reduction in the buffer containing (±)-dithiothreitol (DTT). Furthermore, the Dmaoc group proved compatible with peptide ligation strategies featuring the activation of N-acyl diaminobenzamides (Dbz) with sodium nitrate to generate the respective benzotriazole leaving group. The Dmaoc/Dbz strategy described in this manuscript provides a new method for the chemical synthesis of peptides.

15.
Chemistry ; 24(14): 3623-3633, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29334413

RESUMEN

Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions. With the aim to improve upon both ligation and cleavage, we systematically investigated alternative ligation scaffolds that challenge the N-benzyl dogma. The study revealed that auxiliary-mediated peptide couplings are fastest when the ligation proceeds via 5-membered rather than 6-membered rings. Substituents in α-position of the amine shall be avoided. We observed, perhaps surprisingly, that additional ß-substituents accelerated the ligation conferred by the ß-mercaptoethyl scaffold. We also describe a potentially general means to remove ligation auxiliaries by treatment with an aqueous solution of triscarboxyethylphosphine (TCEP) and morpholine at pH 8.5. NMR analysis of a 13 C-labeled auxiliary showed that cleavage most likely proceeds through a radical-triggered oxidative fragmentation. High ligation rates provided by ß-substituted 2-mercaptoethyl scaffolds, their facile introduction as well as the mildness of the cleavage reaction are attractive features for protein synthesis beyond cysteine and glycine ligation sites.


Asunto(s)
Glicina/química , Aminas/química , Cisteamina/química , Cisteína/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Proteínas/síntesis química
16.
J Pept Sci ; 23(10): 763-768, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28681413

RESUMEN

COMU is uronium-type coupling reagent based on OxymaPure. It showed several advantages over classical benzotriazole-based coupling reagents such as higher solubility, water-soluble byproduct, and monitoring the reaction by changing of color. Although COMU is well known to perform excellent in solution, but its hydrolytic stability in DMF limits its use in automatic peptide synthesizer. Herein, we evaluated the hydrolytic stability of COMU in γ-valerolactone (GVL), acetonitrile (ACN) and N-formylmorpholine (NFM) and compared its stability against DMF. The stability of COMU after 24 h was found to be 88 and 89% in GVL and ACN, respectively, when compared in DMF (14%). Further, the demanding Aib-ACP decapeptide and JR decapeptide were successfully synthesized using COMU dissolved in GVL or ACN while Fmoc amino acids were dissolved in DMF. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Técnicas de Síntesis en Fase Sólida/métodos , Solventes/química , Acetonitrilos/química , Lactonas/química
17.
Bioorg Med Chem Lett ; 27(2): 354-359, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27964883

RESUMEN

In an attempt to develop potential and selective anti-proliferative agents, a series of novel benzothiazine-piperazine derivatives 8a-i and 10a-g were synthesized by coupling of 2H-1,4-benzothiazin-3(4H)-one with various amines 7a-i and 9a-g in excellent yields and evaluated for their in vitro anti-proliferative activity against four cancer cell lines, HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). In vitro inhibitory activity indicated that compounds 8a, 8d, 8g, 10a, 10b, 10e, 10f were found to be good anti-proliferative agents. Among them the derivatives 8g, 10e and 10f were found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking was undertaken to investigate the probable binding mode and key active site interactions in HDAC8 and EHMT2 proteins. The docking results are complementary to the experimental results.


Asunto(s)
Antineoplásicos/farmacología , Péptidos/farmacología , Piperazinas/farmacología , Tiazinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Péptidos/química , Piperazina , Piperazinas/química , Relación Estructura-Actividad , Tiazinas/química
18.
Bioorg Med Chem Lett ; 26(5): 1434-7, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838809

RESUMEN

Native chemical ligation (NCL) proceeds via a S-N acyl shift and, therefore, requires N-terminal cysteine. N(α)-auxiliaries have long been used to enable NCL beyond cysteine. However, the reversibility of the S-N acyl shift under the acidic conditions used to remove the commonly applied N-benzyl auxiliaries limits the scope of this reaction. Herein, we introduce a new class of N(α)-auxiliary which is designed for removal under mild basic conditions. The 3-N-linked 4-mercaptobutyrate auxiliary is readily synthesized in a single step and enables introduction on solid phase by means of reductive amination. The usefulness of the new auxiliary was demonstrated in the synthesis of the anti-microbial C-terminal domain of Dermicidine-1L.


Asunto(s)
Butiratos/química , Butiratos/síntesis química , Estructura Molecular , Estructura Terciaria de Proteína
19.
Biochem Biophys Res Commun ; 468(1-2): 46-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26545782

RESUMEN

It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP10025-33 peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP10025-33 peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleen cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP10025-33 peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP10025-33 were significantly increased compared to control groups. Tumor antigen, GP10025-23 specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy.


Asunto(s)
Inmunoconjugados/uso terapéutico , Inmunoterapia/métodos , Maleimidas/uso terapéutico , Melanoma/inmunología , Melanoma/prevención & control , Bazo/citología , Antígeno gp100 del Melanoma/uso terapéutico , Traslado Adoptivo/métodos , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Interferón gamma/inmunología , Maleimidas/administración & dosificación , Maleimidas/química , Melanoma/terapia , Ratones , Ratones Endogámicos C57BL , Péptidos/administración & dosificación , Péptidos/química , Péptidos/uso terapéutico , Bazo/inmunología , Antígeno gp100 del Melanoma/administración & dosificación , Antígeno gp100 del Melanoma/química
20.
Nano Lett ; 15(10): 6592-600, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26390262

RESUMEN

Substrate stiffness has been shown to regulate the differentiation fate of human mesenchymal stem cells (hMSCs). hMSCs sense and respond to substrate rigidity by exerting traction forces upon the binding between integrins and integrin-specific ligands present on the substrate surface. However, in previous studies, integrin-specific ligands such as Arg-Gly-Asp (RGD) peptides are always grafted to the substrate by a permanent covalent bond. Whether the coupling strength of integrin-specific ligands on substrate will influence cell behaviors has not been explored. In this work, we have developed a facile platform to investigate the effects of varied coupling strength between the RGD peptide and the glass substrate on stem cell behaviors. Glass coverslips are decorated with positive charges by silanization using (3-aminopropyl) triethoxysilane (APTES) to immobilize negatively charged citrate-capped gold nanoparticles (cit-AuNPs) solely via electrostatic interactions. The monolayer of electrostatically immobilized cit-AuNPs is further conjugated with the thiolated RGD peptides through the sulfur-gold bond. The substrate coupling strength of the RGD peptides, which is dependent on the electrostatic interactions between the APTES-treated glass substrate and the cit-AuNPs, is simply tuned by changing the APTES dosage and, hence, the resultant positive charge density on the surface. A total of 0.5% and 12.5% of APTES are used to fabricate low-coupling-strength surfaces (namely, LCS0.5 and LCS12.5), whereas 25% and 50% of APTES are used to fabricate high-coupling-strength surfaces (namely, HCS25 and HCS50). Fluorescence microscopy shows that hMSCs spread well and form stable actin filamentous structure on HCS surfaces but not on LCS surfaces. Remarkably, hMSCs exhibit enhanced osteogenesis on HCS surfaces as revealed by the immunostaining results of multiple early osteogenic markers. These differential behaviors may be governed by Yes-associated protein (YAP), a mechanosensitive transcriptional regulator of stem cells. Our findings highlight the importance of the substrate coupling strength of integrin-binding ligands on regulating adhesion, spreading, and differentiation of hMSCs.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Integrinas/metabolismo , Células Madre Mesenquimatosas/citología , Oro/química , Humanos , Ligandos , Nanopartículas del Metal , Oligopéptidos/química , Unión Proteica , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA