Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.409
Filtrar
1.
Chempluschem ; : e202400350, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135354

RESUMEN

Dye-containing polymers P1 (PEDPP-OT-BDT) and P2 (PEDPP-OT-BDTT) including a π-extended diketopyropyrrole (DPP) derivative and electron-rich thiophene fused ring units (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene for P1 and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene for P2) were synthesized as narrow band gap dyes. A π-extended DPP (EDPP-OT-BrPh), fragment of the polymers P1 and P2, was obtained by extending the π-conjugation of DPP using Ru(III)-catalyzed C-H and N-H activation reported by Gonka et al. in 2019, exhibiting a high quantum yield (φem = 0.84) and small HOMO-LUMO gap (Eg = 1.69 eV) due to the spatial overlap of the HOMO and LUMO orbitals. The solubility of the π-extended DPP was improved by introducing four 2-octylthophene side chains around the periphery of the planer dye moiety, while maintaining the high planarity of the dye molecule, which is essential to the function of optoelectronic devices. As a result, P1 and P2, polymerized with the π-extended DPP and BDT derivatives, exhibit carrier mobility of approximately 10-5 cm2/Vs in organic field-effect transistors (OFETs). In bulk heterojunction (BHJ) solar cells with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), they demonstrate a power conversion efficiency (PCE) of 1.0% with an average transmittance (AVTs) of around 60%.

2.
Adv Sci (Weinh) ; : e2405303, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135539

RESUMEN

The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.

3.
Adv Mater ; : e2407291, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165039

RESUMEN

Scanning probe microscopy (SPM) has enabled significant new insights into the nanoscale and microscale properties of solar cell materials and underlying working principles of photovoltaic and optoelectronic technology. Various SPM modes, including atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, piezoresponse force microscopy, and scanning near-field optical microscopy, can be used for the investigation of electrical, optical and chemical properties of associated functional materials. A large body of work has improved the understanding of solar cell device processing and synthesis in close synergy with SPM investigations in recent years. This review provides an overview of SPM measurement capabilities and attainable insight with a focus on recently widely investigated halide perovskite materials.

4.
ACS Appl Mater Interfaces ; 16(34): 45265-45274, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39151106

RESUMEN

Researchers have been motivated to develop photovoltaic systems that can efficiently convert artificial light into power with the growing use of indoor electrical devices for the Internet of Things. Understanding the impact of molecular design strategies involving morphological optimization through the terminal group of the non-fullerene acceptors (NFAs) is crucial. This is critically important to enhancing the photovoltaic efficiency of organic photovoltaic devices under diverse irradiation conditions. Halogenation of terminal groups proves to be a standout approach for adjusting energy levels, refining light-harvesting capabilities, crystallinity, and bolstering the intermolecular stacking in NFAs. Herein, we have designed two simple NFAs, DICTF-4F and DICTF-4Cl, to explore the dihalogenation (F and Cl) effect on the terminal group on the optical and electrochemical properties. After combining with the BODIPY-thiophene-backboned donor polymer P(BdP-HT), the organic solar cells (OSCs) using an optimized active layer with P(BdP-HT):DICTF-4F and P(BdP-HT):DICTF-4Cl attained a power conversion efficiency (PCE) of about 8.03 and 14.16%, respectively, under 1 sun illumination. Moreover, the OSC-based P(BdP-HT):DICTF-4Cl active layer showed a PCE approaching 24% under 1000 lx indoor conditions.

5.
Sci Rep ; 14(1): 19820, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191819

RESUMEN

Herein, the indolonaphthyridine-based molecules (INDTD1-INDTD8) with A1-π-A2-π-A1 configuration were designed by the end-capped modification of INDTR reference with various acceptors. The density functional theory (DFT) and time-dependent DFT (TD-DFT) analyses at M06/6-31G(d,p) level were reported in this research to explore their optoelectronic and photovoltaic features. Their geometrical structures were initially optimized at the afore-said level and followed by various calculations such as the frontier molecular orbitals (FMOs), UV-Visible, density of states (DOS), transition density matrix (TDM), binding energy (Eb), open circuit voltage (Voc) and fill factor (FF). Moreover, their global reactivity parameters (GRPs) were depicted by using the HOMO-LUMO band gaps obtained from the FMOs study. The tailored molecules demonstrated lower band gaps (2.183-2.269 eV) than INDTR (2.288 eV). They also showed bathochromic shifts in the visible region in chloroform (735.937-762.318 nm) and gas phase (710.384-729.571 nm) as compared to INDTR (724.710 and 698.498 nm, respectively). Further, intramolecular charge transfer (ICT) was demonstrated via the DOS and TDM graphical maps. Among all the entitled chromophores, INDTD7 showed significantly reduced band gap (2.183 eV), red-shifted absorption value (760.914 nm) in chloroform solvent and minimal Eb value (0.554 eV). The presence of -SO3H groups on the terminal acceptors of INDTD7  may enhance the mobility of charges. The results suggested that the newly designed chromophores can be effective candidates for the future organic solar cell applications. Moreover, this study may encourage the experimentalists to develop photovoltaic materials.

6.
Adv Mater ; : e2406879, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177117

RESUMEN

Intrinsically stretchable organic photovoltaics (is-OPVs) hold significant promise for integration into self-powered wearable electronics. However, their potential is hindered by the lack of sufficient consistency between optoelectronic and mechanical properties. This is primarily due to the limited availability of stretchable transparent electrodes (STEs) that possess both high conductivity and stretchability. Here, a hybrid STE with exceptional conductivity, stretchability, and thermal stability is presented. Specifically, STEs are composed of the modified PH1000 (referred to as S-PH1000) and silver nanowires (AgNWs). The S-PH1000 endows the STE with good stretchability and smoothens the surface, while the AgNWs enhance the charge transport. The resulting hybrid STEs enable is-OPVs to a remarkable power conversion efficiency (PCE) of 16.32%, positioning them among the top-performing is-OPVs. With 10% elastomer, the devices retain 82% of the initial PCE after 500 cycles at 20% strain. Additionally, OPVs equipped with these STEs exhibit superior thermal stability compared to those using indium tin oxide electrodes, maintaining 75% of the initial PCE after annealing at 85 °C for 390 h. The findings underscore the suitability of the designed hybrid electrodes for efficient and stable is-OPVs, offering a promising avenue for the future application of OPVs.

7.
ACS Nano ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178239

RESUMEN

van der Waals (vdW) layered materials have been shown to have excellent optoelectronic properties relevant to photovoltaics. Despite their promise, the demonstrated efficiencies of vdW material solar cells remain low and are seldom supported by statistics or spectral quantum efficiency analysis. In this study, we utilize a p-type WSe2 absorber, forming a solar cell with a transparent front InOx electron contact, and a rear Pd reflector/hole contact. We fabricate multiple devices providing statistics for 10 devices with an average 1 sun conversion efficiency above 5%, among which a champion efficiency of 6.37% is achieved. This is the highest AM 1.5G 1 sun efficiency reported for a vdW material solar cell, with a current density supported by external quantum efficiency analysis. This cell is also shown to have near unity quantum efficiency around λ = 600 nm. This work provides support to vdW materials being considered as serious candidates for future thin-film solar cells.

8.
ACS Nano ; 18(35): 24495-24504, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39169869

RESUMEN

The short longevity of perovskite solar cells (PSCs) is the major hurdle toward their commercialization. In recent years, mechanical stability has emerged as a pivotal aspect in enhancing the overall durability of PSCs, prompting a myriad of strategies devoted to this issue. However, the mechanical degradation mechanisms of PSCs remain largely unexplored, with corresponding studies mainly limited to perovskite single crystals, neglecting the complexity and nuances present in PSC devices based on polycrystalline perovskite thin films. Herein, we reveal the underlying mechanisms of the mechanical degradation of formamidinium-based PSCs, which are the most prevalent high-performance PSC candidates. Under uniaxial tensile loads, we found that the degradation is mainly attributed to the sequential increase in the density of micropores and halide defects within the perovskite films. This phenomenon is consistent across various perovskite compositions and environmental conditions. Our findings elucidate mechanistic insights for more targeted mitigation strategies aimed at addressing the mechanical degradation of PSC devices.

9.
J Colloid Interface Sci ; 677(Pt A): 599-609, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39111094

RESUMEN

Harnessing the inexhaustible solar energy for water splitting is regarded one of the most promising strategies for hydrogen production. However, sluggish kinetics of oxygen evolution reaction (OER) and expensive photovoltaics have hindered commercial viability. Here, an adhesive-free electrodeposition process is developed for in-situ preparation of earth-abundant electrocatalysts on super-flat indium tin oxide (ITO) substrate. NiFe hydroxide exhibited prominent OER performance, achieving an ultra-low overpotential of 236 mV at 10 mA/cm2 in alkaline solution. With the superior OER activity, we achieved an unassisted solar water splitting by series connected perovskite solar cells (PSCs) of 2 cm2 aperture area with NiFe/ITO//Pt electrodes, yielding overall solar to hydrogen (STH) efficiency of 13.75 %. Furthermore, we upscaled the monolithic facility to utilize perovskite solar module for large-scale hydrogen production and maintained an approximate operating current of 20 mA. This creative strategy contributes to the decrease of industrial manufacturing expenses for perovskite-based photovoltaic-electrochemical (PV-EC) hydrogen production, further accelerating the conversion and utilization of carbon-free energy.

10.
Adv Mater ; : e2406653, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113338

RESUMEN

The solution aggregation structure of conjugated polymers is crucial to the morphology and resultant optoelectronic properties of organic electronics and is of considerable interest in the field. Precise characterizations of the solution aggregation structures of organic photovoltaic (OPV) blends and their temperature-dependent variations remain challenging. In this work, the temperature-dependent solution aggregation structures of three representative high-efficiency OPV blends using small-angle X-ray/neutron scattering are systematically probed. Three cases of solution processing resiliency are elucidated in state-of-the-art OPV blends. The exceptional processing resiliency of high-efficiency PBQx-TF blends can be attributed to the minimal changes in the multiscale solution aggregation structure at elevated temperatures. Importantly, a new parameter, the percentage of acceptors distributed within polymer aggregates (Ф), for the first time in OPV blend solution, establishes a direct correlation between Ф and performance is quantified. The device performance is well correlated with the Kuhn length of the cylinder related to polymer aggregates L1 at the small scale and the Ф at the large scale. Optimal device performance is achieved with L1 at ≈30 nm and Ф within the range of 60 ± 5%. This study represents a significant advancement in the aggregation structure research of organic electronics.

11.
Materials (Basel) ; 17(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124361

RESUMEN

This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton-vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it outlines charge trapping and recombination in the materials and draws the corresponding practical implications. The following section focuses on the practical application of organic materials in optoelectronics devices and highlights the detailed structure, operational principle, and performance metrics of organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs), organic photodetectors, and organic transistors in detail. Finally, this study underscores the transformative impact of organic materials on the evolution of optoelectronics, providing a comprehensive understanding of their properties, mechanisms, and diverse applications that contribute to advancing innovative technologies in the field.

12.
Adv Mater ; 36(35): e2310933, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38949017

RESUMEN

Molecular doping is commonly utilized to tune the charge transport properties of organic semiconductors. However, applying this technique to electrically dope inorganic materials like metal oxide semiconductors is challenging due to the limited availability of molecules with suitable energy levels and processing characteristics. Herein, n-type doping of zinc oxide (ZnO) films is demonstrated using 1,3-dimethylimidazolium-2-carboxylate (CO2-DMI), a thermally activated organic n-type dopant. Adding CO2-DMI into the ZnO precursor solution and processing it atop a predeposited indium oxide (InOx) layer yield InOx/n-ZnO heterojunctions with increased electron field-effect mobility of 32.6 cm2 V-1 s-1 compared to 18.5 cm2 V-1 s-1 for the pristine InOx/ZnO bilayer. The improved electron transport originates from the ZnO's enhanced crystallinity, reduced hydroxyl concentrations, and fewer oxygen vacancy groups upon doping. Applying the optimally doped InOx/n-ZnO heterojunctions as the electron-transporting layers (ETLs) in organic photovoltaics (OPVs) yields cells with improved power conversion efficiency of 19.06%, up from 18.3% for devices with pristine ZnO, and 18.2% for devices featuring the undoped InOx/ZnO ETL. It is shown that the all-around improved OPV performance originates from synergistic effects associated with CO2-DMI doping of the thermally grown ZnO, highlighting its potential as an electronic dopant for ZnO and potentially other metal oxides.

13.
Adv Sci (Weinh) ; 11(32): e2405622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961635

RESUMEN

The stability of hybrid organic-inorganic halide perovskite semiconductors remains a significant obstacle to their application in photovoltaics. To this end, the use of low-dimensional (LD) perovskites, which incorporate hydrophobic organic moieties, provides an effective strategy to improve their stability, yet often at the expense of their performance. To address this limitation, supramolecular engineering of noncovalent interactions between organic and inorganic components has shown potential by relying on hydrogen bonding and conventional van der Waals interactions. Here, the capacity to access novel LD perovskite structures that uniquely assemble through unorthodox S-mediated interactions is explored by incorporating benzothiadiazole-based moieties. The formation of S-mediated LD structures is demonstrated, including one-dimensional (1D) and layered two-dimensional (2D) perovskite phases assembled via chalcogen bonding and S-π interactions. This involved a combination of techniques, such as single crystal and thin film X-ray diffraction, as well as solid-state NMR spectroscopy, complemented by molecular dynamics simulations, density functional theory calculations, and optoelectronic characterization, revealing superior conductivities of S-mediated LD perovskites. The resulting materials are applied in n-i-p and p-i-n perovskite solar cells, demonstrating enhancements in performance and operational stability that reveal a versatile supramolecular strategy in photovoltaics.

14.
Adv Sci (Weinh) ; : e2400540, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010670

RESUMEN

The growing prevalence of Internet of Things (IoT) devices hinges on resolving the challenge of powering sensors and transmitters. Addressing this, supply-less IoT devices are gaining traction by integrating energy harvesters. This study introduces a temperature sensor devoid of external power sources, achieved through a novel luminescent solar concentrator (LSC) device based on a stretchable, adhesive elastomer. Leveraging a lanthanide-doped styrene-ethylene-butylene-styrene matrix, the LSC yielded 0.09% device efficiency. The resultant temperature sensor exhibits a thermal sensitivity of 2.1%°C-1 and a 0.06 °C temperature uncertainty, autonomously transmitting real-time data to a server for user visualization via smartphones. Additionally, the integration of LED-based lighting enables functionality in low-light conditions, ensuring 24 h cycle operation and the possibility of having four distinct thermometric parameters without changing the device configuration, stating remarkable robustness and reliability of the system.

15.
Adv Mater ; : e2403413, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011771

RESUMEN

The rapid development of the Internet of Things (IoT) has accelerated the advancement of indoor photovoltaics (IPVs) that directly power wireless IoT devices. The interest in lead-free perovskites for IPVs stems from their similar optoelectronic properties to high-performance lead halide perovskites, but without concerns about toxic lead leakage in indoor environments. However, currently prevalent lead-free perovskite IPVs, especially tin halide perovskites (THPs), still exhibit inferior performance, arising from their uncontrollable crystallization. Here, a novel adhesive bonding strategy is proposed for precisely regulating heterogeneous nucleation kinetics of THPs by introducing alkali metal fluorides. These ionic adhesives boost the work of adhesion at the buried interface between substrates and perovskite film, subsequently reducing the contact angle and energy barrier for heterogeneous nucleation, resulting in high-quality THP films. The resulting THP solar cells achieve an efficiency of 20.12% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs and successfully powering radio frequency identification-based sensors.

16.
Adv Mater ; : e2406984, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039978

RESUMEN

The photovoltaic effect is gaining growing attention in the optoelectronics field due to its low power consumption, sustainable nature, and high efficiency. However, the photovoltaic effects hitherto reported are hindered by the stringent band-alignment requirement or inversion symmetry-breaking, and are challenging for achieving multifunctional photovoltaic properties (such as reconfiguration, nonvolatility, and so on). Here, a novel ionic photovoltaic effect in centrosymmetric CdSb2Se3Br2 that can overcome these limitations is demonstrated. The photovoltaic effect displays significant anisotropy, with the photocurrent being most apparent along the CdBr2 chains while absent perpendicular to them. Additionally, the device shows electrically-induced nonvolatile photocurrent switching characteristics. The photovoltaic effect is attributed to the modulation of the built-in electric field through the migration of Br ions. Using these unique photovoltaic properties, a highly secure circuit with electrical and optical keys is successfully implemented. The findings not only broaden the understanding of the photovoltaic mechanism, but also provide a new material platform for the development of in-memory sensing and computing devices.

17.
Sci Total Environ ; 948: 174846, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032747

RESUMEN

This study presents a Life Cycle Assessment (LCA) of photovoltaic (PV) electricity production in Italy based on the composition of the current and future Italian PV scenario. Using detailed and site-specific data, the actual composition of the Italian mix of PV technologies at the end of 2022 and those expected for 2030 were defined. A new LCA modelling of the most relevant PV technologies was carried out using updated and reliable inventory data. The impact assessment was performed adopting the most relevant impact categories of Environmental Footprint Method v. 3.1. The environmental profiles of the two Italian PV scenarios (PV Scenario_2021 and PV Scenario_2030) analysed in this study were compared with that of the PV scenario achievable using unaltered Ecoinvent v 3.9.1 datasets specific to Italian. The obtained results highlighted that the use of Ecoinvent datasets and hypothesis entails a significant overestimation of the environmental impacts of photovoltaic electricity production in Italy; showing higher impacts ranging from 70 % to 30 % (depending on the impact category considered) and the main key factors affecting the results were investigated. However, the wide impacts gaps pointed out the importance of conducting representative LCA studies of the fast-growing and evolving PV context of the countries, to provide reliable impact results to policy makers and to other researchers and who need to include the PV electricity generation in their studies. Furthermore, the environmental performance analysis of the two Italian PV scenarios highlighted the higher sustainability of the PV electricity production in the next years (PV Scenario_2030) for all considered impact categories (except for land use). This improvement can be primarily attributed to the higher annual energy yield and the greater utilization of high-efficiency PV technologies, along with the expansion of ground-mounted PV plants.

18.
Proc Natl Acad Sci U S A ; 121(29): e2303519121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976726

RESUMEN

The perceived risk of climate change and the sense of urgency for an energy transition are both politically polarized, especially in the United States. Yet, we know relatively little about how political polarization affects consumer energy preferences and behaviors. Here, we use the case of residential solar photovoltaics (PV) in New York State to 1) measure the partisan gap in solar adoption rates and 2) test whether more favorable economics of solar PV mute the effect of political identity. Using household-level, longitudinal data that include nearly 63,000 completed residential PV projects, we find evidence of a partisan gap in PV adoption. Democratic homeowners are approximately 1.45 times as likely to adopt solar PV as Republican homeowners. Republicans' rate of adoption is the lowest of all measured groups, behind Independents, unaffiliated voters, and homeowners not registered to vote. Crucially, however, Republicans in our sample appear to be the most attuned to the changing economics and financing options of solar PV. Our estimates suggest that 1) as homeowners' electricity rate increases relative to its long-run average, the adoption gap between Democ-rats and Republicans narrows, 2) that Republican PV adopters obtain systems with higher expected economic value, and 3) Republicans take greater advantage of alternative financing models, like leases and power purchase agreements, especially when the upfront costs of solar are high. The results demonstrate that political identity affects consumers' participation in the energy transition, but local context, including the local economics of solar, may mitigate the effect of personal politics.

19.
ACS Appl Mater Interfaces ; 16(31): 41244-41256, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041930

RESUMEN

In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.

20.
Macromol Rapid Commun ; : e2400343, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031942

RESUMEN

In this study, six different donor-π-acceptor1-π-donor-acceptor2 type random co-polymers containing benzodithiophene as a donor, benzooxadiazole (BO), and thieno[3,4-c]pyrrole-4,6-dione (TPD) as acceptor, have been synthesized and characterized. In addition to the acceptor core ratio at different values, the effect of aromatic bridge structures on the optical, electronic, and photovoltaic properties of six different random co-polymers is investigated by using thiophene and selenophene structures as aromatic bridge units. To investigate how the acceptor unit ratio and replacement of aromatic bridge units impact the structural, electronic, and optical properties of the polymers, density functional theory (DFT) calculations are carried out for the tetramer models. The open-circuit voltage (VOC), which is strongly correlated with the HOMO levels of the donor material, is enhanced with the increasing ratio of the TPD moiety. On the other hand, the short-circuit current (JSC), which is associated with the absorption ability of the donor material, is improved by the increasing ratio of BO moiety with the π-bridges. BO moiety dominant selenophene π-bridged co-polymer (P4) showed the best performance with a power conversion efficiency (PCE) of 6.26%, a JSC of 11.44 mA cm2, a VOC of 0.80 V, and a fill factor (FF) of 68.81%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA