Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.322
Filtrar
1.
ChemistryOpen ; : e202400102, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39359024

RESUMEN

Researchers are keenly interested in developing metal-based nanoparticles using plant sources as they are eco-friendly, less expensive and simpler. Zinc oxide nanoparticles, symbolized as D-ZnONPs and M-ZnONPs were synthesized in this study utilizing the leaves of D. indica and M. micrantha, respectively, and studied their impact on the growth inhibition of various bacterial strains and on the photocatalysis. By displaying the distinctive surface plasmon resonance (SPR) band at 373 nm in UV-Vis and bands at 450-480 cm-1 corresponding to Zn-O stretching FTIR spectroscopy imparted the formation of ZnONPs which was further supported by X-ray diffraction analysis by showing the polycrystalline nature and a hexagonal wurtzite structure. The spherical form and average particle size of 30 nm of the produced ZnONPs, as confirmed by electron microscopy, are also confirmed to be crystalline. Under natural sunlight, both ZnONPs demonstrate excellent degradation efficacy about 96-99 % within 100 min towards methylene blue (MB). Furthermore, it is noteworthy that both the synthesized ZnONPs exhibited 55-60 % efficacy with respect to antibiotics in inhibiting the growth of various pathogenic bacterial strains. Overall, ZnONPs can be produced on a large-scale using plant sources and employed them in environmental remediation and cosmetic industries as prominent components.

2.
Biol Trace Elem Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354182

RESUMEN

Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.

3.
J Vet Res ; 68(3): 389-394, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39324026

RESUMEN

Introduction: Microsporum canis is a dermatophyte that mainly affects dogs and cats. However, it can be transmitted to humans by direct contact. This makes it one of the most frequent causative agents of dermatophytosis in humans, reflecting the frequent human close relationships with pets. Conventional treatment relies on antifungal pharmacological agents. However, errors in application have led to the occurrence of fungal resistance and toxic effects. Consequently, new therapeutic alternatives are needed for M. canis infections. Plant extracts have been explored as phytotherapeutics for the treatment of dermatophyte infections, which prompted an attempt to apply extracts of the ethnopharmacologically important plants Artemisia ludoviciana and Cordia boissieri. Material and Methods: Methanolic extracts of these two plants were obtained using a Soxhlet method and were characterised by phytochemical screening. Extracts were evaluated against a M. canis commercial strain (ATCC-11621) using the microdilution method described in the Clinical and Laboratory Standards Institute protocol M38-A, determining its minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). Subsequently, these concentrations were tested in a human keratinocyte human cell line. Results: Artemisia ludoviciana and C. boissieri extracts showed MIC values of 2,500 and 1,250 µg/mL, and MFC values of 5,000 and 2,500 µg/mL against M. canis, respectively. These extracts did not inhibit HaCaT cell proliferation in vitro. Conclusion: The evaluated extracts showed potential for the treatment of M. canis fungal infections. However, further studies on their phytochemical characterisation, purification, clinical safety and formulation are required.

4.
J Nutr ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332773

RESUMEN

BACKGROUND: Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega-3, are good candidates to prevent age-related cognitive decline, due to their immunomodulatory, antioxidant and neuroprotective properties. OBJECTIVE: The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal), and omega-3 (om-3) on cognitive function in a mice model of accelerated aging and to understand the biological mechanisms involved. METHODS: We used an accelerated aging model by injecting 3-month-old male C57Bl6/J mice with D-galactose for 8 weeks, during which they were fed with a balanced control diet, supplemented or not with PE and/or om-3 (n=15-16/group). Short-term memory was evaluated by Y-maze test, following by analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t-test, ANOVA and Pearson's correlation). RESULTS: Our results showed that oral administration of PE, om-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (p<0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and DCX, in hippocampus (p<0.05 for both). Moreover, om-3 and the mix showed a higher omega-3 level (p<0.05) and EPA-derived 18-HEPE (p<0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS: These results suggest that the mix of PE and om-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.

5.
Inflamm Res ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340661

RESUMEN

OBJECTIVE AND DESIGN: Neuroinflammation is a protective mechanism but can become harmful if chronic and/or unregulated, leading to neuronal damage and cognitive alterations. Limiting inflammation and promoting resolution could be achieved with nutrients such as grapes and blueberries polyphenols, saffron carotenoids, and omega-3, which have anti-inflammatory and proresolutive properties. METHODS: This study explored the impact of 18-day supplementation with plant extracts (grape, blueberry and saffron), omega-3 or both (mix) on neuroinflammation induced by lipopolysaccharide (LPS, 250 µg/kg) in 149 mice at different time points post-LPS treatment (30 min, 2 h, 6 h). Inflammatory, oxidative and neuroprotective gene expression; oxylipin quantification; and fatty acid composition were analyzed at each time point. PCA analysis was performed with all these biomarkers. RESULTS: Mix supplementation induced changes in the resolution of inflammation. In fact, the production of proinflammatory mediators in the hippocampus started earlier in the supplemented group than in the LPS group. Pro-resolving mediators were also found in higher quantities in supplemented mice. These changes were associated with increased hippocampal antioxidant status at 6 h post-LPS. CONCLUSIONS: These findings suggest that such dietary interventions with plant extracts, and omega-3 could be beneficial in preventing neuroinflammation and, consequently, age-related cognitive decline. Further research is needed to explore the effects of these supplements on chronic inflammation in the context of aging.

6.
Microb Pathog ; 196: 106970, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39307197

RESUMEN

BACKGROUND: The protist Blastocystis species (sp.) inhabits the gastrointestinal tracts of humans and animals. In recent decades, alternative natural products derived from plants have demonstrated potential as effective treatments for Blastocystis infection. The anti-Blastocystis activity of three herbal ethanolic extracts- Odontites linkii subsp. cyprius, Ptilostemon chamaepeuce subsp. cyprius and Quercus alnifolia-were investigated in this study. METHODS: Three distinct isolates of Blastocystis sp. maintained in vitro were molecularly subtyped. Cytotoxicity analysis was performed on individual Blastocystis sp. isolates using 250, 500, 1000, and 2000 µg/mL herbal ethanolic extracts for 24 and 48 hours. Quantitative, morphological, and size alterations of Blastocystis cells assessed the cytotoxicity of herbal anti-Blastocystis effect. RESULTS: Following subtyping analysis, one strain of Blastocystis had ST3 and ST1 mixed subtypes, and two strains had ST1 subtypes. Starting after 24 h of incubation, P. cham. subsp. cyprius (1000 µg/mL) exhibited the most pronounced and consistent anti-Blastocystis cytotoxicity against all three strains, comparable to metronidazole. The Ptilostemon chamaepeuce subsp. cyprius anti-Blastocystis cytotoxicity was evident in parasite quantitative distress, morphological alterations, and significant reductions in cell size. Odontites linkii subsp. cyprius cytotoxicity varied among the three Blastocystis strains. The three Blastocystis strains were resistant to Quercus alnifolia. CONCLUSION: P. cham. subsp. cyprius was a potent and promising new herbal extract against Blastocystis sp. in vitro assays.

7.
Curr Drug Deliv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39234913

RESUMEN

Introduction: Chikungunya Virus (CHIKV), a mosquito-transmitted pathogen, poses a significant global health threat owing to its widespread prevalence and high morbidity. There are no approved vaccines or antivirals for prevention or treatment. Screening of folklore medicinal plants has emerged as a promising approach to finding novel therapeutics to combat pathogens. Hence, this study aimed to evaluate the anti-chikungunya potential of folklore medicinal plants and their phytochemicals.

Methods: Maximum non-toxic concentrations (MNTD) of the extracts to Vero cells were determined by the cytotoxicity assay. A Focus-Forming Unit (FFU) assay was used to assess the antiviral activity of the extracts (at MNTD) against CHIKV in Vero cells under pre-, co-, and post-treatment conditions. GC-MS was used to detect the phytochemicals of the extracts, and Schrodinger (Maestro) software was employed for their molecular docking against the target protein of CHIKV.

Results: Azadirachta indica exhibited anti-CHIKV activity during pre- and post-treatment, decreasing the virus titer from 8.145 to 7.998 and 8.361 to 8.040 mean log10 FFU/ml, respectively. Calendula officinalis and Piper retrofractum exhibited anti-CHIKV activity only during post-treatment (8.361 to 8.135, 8.361 to 8.075). Moreover, molecular docking studies of phytochemicals detected in GCMS analysis of all the extracts revealed that many phytochemicals (especially F3, F5, F6, and A1) could bind to the non-structural protein (nSP2) target of CHIKV and suppress the viral replication.

Conclusion: The screened plants showed the ability to inhibit CHIKV infection and replication and hold potential for further investigation in developing treatments for Chikungunya.

8.
Foods ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39272560

RESUMEN

Hyperlipidemia is a metabolic disorder characterized by abnormal lipid metabolism, resulting in lipid accumulation in the plasma. According to reports, medicinal and edible plants can reduce the risk of metabolic diseases such as hyperlipidemia. This study investigates the effects and mechanisms of Astragalus membranaceus extract (AME), Hippophae rhamnoides L. extract (HRE), and Taraxacum mongolicum Hand. Mazz extract (TME) on hyperlipidemia. Active compounds and potential gene targets of AME, HRE, and TME were screened using LC-MS and TCMSP databases, and hyperlipidemia targets were detected from the OMIM and DisGeNet databases. A drug-target pathway disease network was constructed through protein interactions, GO enrichment, and KEGG pathway analysis. Finally, the lipid-lowering effects of three extracts were validated through in vitro HepG2 cell and in vivo animal experiments. The results show that LC-MS and network pharmacology methodologies identified 41 compounds and 140 targets. KEGG analysis indicated that the PI3K-Akt and MAPK signaling pathways significantly treat hyperlipidemia with AHT. In vitro experiments have shown that AHT is composed of a ratio of AME:HRE:TME = 3:1:2. HepG2 cell and animal experiments revealed that AHT exhibits strong lipid-lowering and antioxidant properties, significantly regulating the levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC). It is worth noting that AHT can effectively downregulate the protein expression levels of p-AKT/AKT and p-PI3K/PI3K and upregulate the protein expression levels of p-AMPK/AMPK and SIRT1, verifying the results predicted by network pharmacology. This study presents a novel approach to utilizing these natural plant extracts as safe and effective treatments for hyperlipidemia.

9.
Curr Top Med Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253917

RESUMEN

INTRODUCTION: The available literature indicates that Hyssopus officinalis and Grindelia robusta are raw materials with great potential for use in prevention and therapy. Therefore, the aims of this study were to assess the phytochemical profile and antioxidant and cytoprotective properties of extracts prepared using various solvents, additionally taking into account different methods of drying the plant material. METHODS: Hydrodistilled oil was analysed by GC-MS. The chemical composition of the extracts was estimated by spectrophotometry and the HPLC-DAD method. Antioxidant activity was evaluated using DPPH and FRAP and measuring the intracellular level of ROS. Alamar Blue and Neutral Red tests were used to assess the cytotoxicity of the extracts on skin cells - keratinocytes and fibroblasts. RESULTS: The major components of hyssop essential oil were cis- (44.9%) and trans- (18.2%) pinocamphone, while borneol (16.1%), and α-pinene (12.0%) were predominant in grindelia essential oil. Flavonoids were dominant in the extracts (water:ethanol, water:methanol, and water: glycerol) from hot-air dried hyssop herb, while phenolic acids were the predominant compounds in the grindelia herb extracts. The water:ethanol hyssop extract had the highest total content of flavonoids (42.26 mg CE/mL), among which isoquercitrin and rutin were present in the highest quantities (32.61 mg/mL and 21.47 mg/mL, respectively). In the case of grindelia, the highest total phenolic acid content (26.24 mg CAE/mL) was recorded in the water:ethanol extract, and the dominant compounds among them were 1,5-dicaffeoylquinic and chlorogenic acid (10.85 and 6.39 mg/mL, respectively). The water:ethanol extract from both plants also exhibited the highest antioxidant activity in the DPPH and FRAP tests (79.19% and 1.39 mmol/L, respectively, for grindelia and 67.61% and 1.04 mmol/L for hyssop) and was most effective at reducing the level of ROS in cells. In addition, water:ethanol extracts may have a positive impact on the viability of skin cells in vitro. CONCLUSION: Water:ethanol extracts from H. officinalis and G. robusta herb are promising sources of active compounds and may find application as natural materials with valuable biological properties, which require further in vitro and in vivo testing.

10.
Nutrients ; 16(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39339756

RESUMEN

The incidence of neurodegenerative disorders like Alzheimer's or Parkinson's Disease, characterized by a progressive cognitive decline, is rising worldwide. Despite the considerable efforts to unveil the neuropsychological bases of these diseases, there is still an unmet medical need for effective therapies against cognitive deficits. In recent years, increasing laboratory evidence indicates the potential of phytotherapy as an integrative aid to improve cognitive functions. In this review, we describe the data of plant whole extracts or single compounds' efficacy on validated preclinical models and neuropsychological tests, aiming to correlate brain mechanisms underlying rodent behavioral responses to human findings. After a search of the literature, the overview was limited to the following plants: Dioscorea batatas, Ginkgo biloba, Melissa officinalis, Nigella sativa, Olea europaea, Panax ginseng, Punica granatum, and Vitis vinifera. Results showed significant improvements in different cognitive functions, such as learning and memory or visuospatial abilities, in both humans and rodents. However, despite promising laboratory evidence, clinical translation has been dampened by a limited pharmacological characterization of the single bioactive components of the herbal products. Depicting the contribution of the single phytochemicals to the phytocomplex's pharmacological efficacy could enable the comprehension of their potential synergistic activity, leading to phytotherapy inclusion in the existing therapeutic package against cognitive decline.


Asunto(s)
Fitoterapia , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Humanos , Animales , Cognición/efectos de los fármacos , Trastornos Neurocognitivos/tratamiento farmacológico , Pruebas Neuropsicológicas , Ginkgo biloba/química , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad
11.
Int J Biol Macromol ; 280(Pt 2): 135661, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299417

RESUMEN

The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.

12.
Antioxidants (Basel) ; 13(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39334758

RESUMEN

There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.

13.
Foods ; 13(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39335846

RESUMEN

Listeria are Gram-negative intracellular foodborne pathogens that can cause invasive infections with high mortality rates. In this work, the antibacterial activity of ten essential oils, infusion extracts, and decoction extracts of some medicinal plants was tested against Listeria monocytogenes and listeria ivanovii strains. The effects of different physical conditions including temperature, pH, sodium chloride, and some organic acids were studied. The results showed that the water extracts gave the maximum bacterial inhibition, while ethanolic extract was inactive against the tested Listeria spp. The antibiotic sensitivity of L. monocytogenes LMG10470 and L. ivanovii LMZ11352 was tested against five antibiotics including imipenem, levofloxacin, amikacin, ampicillin, and amoxicillin. Imipenem was the most effective antibiotic, resulting in inhibition zones of 40 mm and 31 mm for L. monocytogenes and L. ivanovii, respectively. When imipenem mixed with Syzygium aromaticum oil, Salvia officinalis oil, Pimpinella anisum infusion, and Mentha piperita infusion each, the water extract of Moringa oleifera leaves and seeds against LMG10470 and LMZ11352 resulted in broader antibacterial activity. The antimicrobial activity of both Pimpinella anisum and Mentha piperita plant extracts is related to a variety of bioactive compounds indicated by gas chromatography-mass spectrometry analysis of these two plant extracts. These two plant extracts seemed to contain many chemical compounds elucidated by gas chromatography-mass spectrometry (GC-MS) and infrared radiation spectra. These compounds could be classified into different chemical groups such as ethers, heterocyclic compounds, aromatic aldehydes, condensed heterocyclic compounds, ketones, alicyclic compounds, aromatics, esters, herbicides, saturated fatty acids, and unsaturated fatty acids. The use of these natural compounds seems to be a useful technological adjuvant for the control of Listeria spp. in foods.

14.
Pharmaceutics ; 16(9)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39339251

RESUMEN

Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography-mass spectroscopy. The antinociceptive activity of the ointment was assessed using the hot plate, tail flick, and formalin tests, whereas the anti-inflammatory activity was measured using the acute and chronic TPA-induced ear edema tests. Mechanisms of action were evaluated using inhibitors from signaling pathways related to pain response and by using histological analysis and assessing the expression and activity of pro-inflammatory mediators. Results: The ointment showed antinociceptive and anti-inflammatory effects like those observed with diclofenac gel (1.16% v/v) and ketoprofen gel (2.5% v/v). The antinociceptive actions of the ointment are mediated by the possible participation of the opiodergic system and the nitric oxide pathway. The anti-inflammatory response was characterized by a decrease in myeloperoxidase (MPO) activity and by a reduction in ear swelling and monocyte infiltration in the acute inflammation model. In the chronic model, the mechanism of action relied on a decrease in pro-inflammatory mediators such as COX-2, IL-1ß, TNF-α, and MPO. An in-silico study with myristic acid, one of the compounds identified in the ointment's plant mixture, corroborated the in vivo results. Conclusions: The ointment showed antinociceptive activities mediated by the decrease in COX-2 and NO levels, and anti-inflammatory activity due to the reduction in IL-1ß and TNFα levels, a reduction in MPO activity, and a decrease in NF-κB and COX-2 expression.

15.
Microbiome ; 12(1): 145, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107803

RESUMEN

BACKGROUND: This study aimed to engineer and optimise a dysbiotic biofilm model to develop in vitro root caries for investigating microbial modulation strategies. The model involved growing complex biofilms from a saliva inoculum collected from four volunteers using two strategies. In the first strategy ("pre-treatment strategy"), bovine root slabs were used, and two natural compounds were incorporated at time 0 of the 10-day biofilm experiment, which included sucrose cycles mimicking the cariogenic environment. In the second strategy ("post-treatment strategy"), mature biofilms were grown in a modified Calgary biofilm device coated with collagen and hydroxyapatite for 7 days and then were exposed to the same natural compounds. The metatranscriptome of each biofilm was then determined and analysed. Collagenase activity was examined, and the biofilms and dentine were imaged using confocal and scanning electron microscopy (SEM). Mineral loss and lesion formation were confirmed through micro-computed tomography (µ-CT). RESULTS: The pH confirmed the cariogenic condition. In the metatranscriptome, we achieved a biofilm compositional complexity, showing a great diversity of the metabolically active microbiome in both pre- and post-treatment strategies, including reads mapped to microorganisms other than bacteria, such as archaea and viruses. Carbohydrate esterases had increased expression in the post-treated biofilms and in samples without sugar cycles, while glucosyltransferases were highly expressed in the presence of sucrose cycles. Enrichment for functions related to nitrogen compound metabolism and organic cyclic component metabolism in groups without sucrose compared to the sucrose-treated group. Pre-treatment of the roots with cranberry reduced microbial viability and gelatinase (but not collagenase) activity (p < 0.05). SEM images showed the complexity of biofilms was maintained, with a thick extracellular polysaccharides layer. CONCLUSIONS: This root caries model was optimized to produce complex cariogenic biofilms and root caries-like lesions, and could be used to test microbial modulation in vitro. Pre-treatments before biofilm development and cariogenic challenges were more effective than post-treatments. The clinical significance lies in the potential to apply the findings to develop varnish products for post-professional tooth prophylaxis, aiming at implementing a strategy for dysbiosis reversal in translational research. Video Abstract.


Asunto(s)
Biopelículas , Microbiota , Caries Radicular , Saliva , Humanos , Caries Radicular/microbiología , Saliva/microbiología , Bovinos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Dentina/microbiología , Colagenasas/metabolismo
16.
Vet Parasitol ; 331: 110281, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111197

RESUMEN

Rhipicephalus microplus is among the most important ectoparasites for livestock. The use of synthetic acaricides has raised some concerns due to the selection of tick populations that are resistant to acaricides and environmental contamination. Therefore, plant extracts have been used as alternatives for the treatment of animals infested with ticks. In this study, R. microplus populations from seven different dairy farms were collected and assessed for their resistance to the acaricides cypermethrin or trichlorfon. Larvae of the most resistant population were used in assays to evaluate the acaricide effect of leaf extracts from plants of the Brazilian savanna. The most active extracts were also tested against fully engorged females. Among seven tick populations, five and three showed resistance level ≥ III for cypermethrin or trichlorfon, respectively. The most resistant tick population was evaluated in mortality assays with the plants Piptadenia viridiflora, Annona crassiflora, Caryocar brasiliense, Ximenia americana, and Schinopsis brasilienses. The ethanolic extracts of C. brasiliense, X. americana and S. brasilienses showed higher larvicidal effects in comparison to the other extracts and cypermethrin. The ethanolic extract of X. americana showed 60.79 % efficacy against fully engorged females of the acaricide resistant tick strain. The ethanolic extracts of C. brasiliense, X. americana, and S. brasilienses showed peaks in HPLC-DAD, indicating the presence of tannins and flavonoids. Three of the plants showed promising results and should be explored in further studies to develop novel tools to control R. microplus in cattle.


Asunto(s)
Acaricidas , Extractos Vegetales , Piretrinas , Rhipicephalus , Triclorfón , Animales , Rhipicephalus/efectos de los fármacos , Piretrinas/farmacología , Acaricidas/farmacología , Brasil , Femenino , Extractos Vegetales/farmacología , Triclorfón/farmacología , Larva/efectos de los fármacos , Pradera , Bovinos , Resistencia a Medicamentos , Hojas de la Planta/química , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/tratamiento farmacológico
17.
Sci Rep ; 14(1): 20253, 2024 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215068

RESUMEN

Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.


Asunto(s)
Movimiento Celular , Mitocondrias , Extractos Vegetales , Neoplasias de la Mama Triple Negativas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Movimiento Celular/efectos de los fármacos , Ratones , Femenino , Línea Celular Tumoral , Humanos , Glucólisis/efectos de los fármacos , Fabaceae/química
18.
Anal Bioanal Chem ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167185

RESUMEN

The chemical components of natural fragrant plant extracts are of high complexity, and the strategies for quality control (QC) and further discovery of fragrance mechanisms still need to be further investigated. This study integrated the strategies and methods of untargeted metabolomics and chemometrics and statistical modeling to attain the goal. The techniques of reversed-phase and HILIC analysis of ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) were simultaneously used to collect data in both positive and negative ion modes. The pattern analysis of fingerprints and discovery of characteristic molecular markers for QC analysis were comprehensively employed to reach in-depth analysis of the quality variation and discovery of differential molecules among natural fragrant plant extracts. The former uses fingerprint technique to analyze their overall similarities and differences, and the latter comprehensively discovers molecular substances characterizing the chemical characteristics of fragrant extracts with the help of metabolomics and univariate and multivariate methods. The findings are expected to be used as the molecular markers in product manufacturing, sales, and consumption to achieve accurate quality control and recognition of targeted molecules for potential quality monitoring using spectroscopy techniques. In this work, 27 natural fragrant extracts were applied as examples, and their chemical components were comprehensively analyzed with discovery of markers for quality control. After data integration, 1178 molecules were annotated, and 267 differential metabolite molecules with the values of variable importance in the projection (VIP) larger than 1.0 were found. The results show that the method proposed in this work is of great significance for high-coverage analysis, QC marker discovery, and aroma mechanism elucidation, which has potential applications in the areas of food, cosmetics, pharmaceuticals, tobacco, and others.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39169473

RESUMEN

Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.

20.
Heliyon ; 10(15): e35630, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170264

RESUMEN

Previous studies have highlighted the beneficial properties of plants rich in polyphenols, such as Lonicera caerulea var. Kamtschatica Sevast. (LCK), Aronia melanocarpa (AM), and Echinacea purpurea (EP). These plants have demonstrated antioxidant, immunomodulatory, and potential antiviral effects. Thus, the objective of this study was to investigate the impact of the ELA blend, a polyphenol-rich blend containing EP, LCK, and AM, on the cellular mechanisms involved in viral infection. To assess the effects of the ELA blend, various experiments were conducted using A549 cells and a mucociliary tissue 3D model called EpiAirway™. Inflammation and oxidative stress induced by LPS were evaluated through measurements of SOD activity, ELISA, and qPCR analysis. Additionally, antiviral assays were performed in a cell-present environment to examine the blend's effectiveness against HCoV-OC43. The results showed that the ELA blend-treated group exhibited reduced expression of IL1B, CXCL8, ICAM1, MCP1, and RELA in both A549 cells and EpiAirway™. Moreover, the blend enhanced the expression of CAT, HMOX1, SOD1, and SOD2 in A549 cells. The antiviral activity of the ELA blend was also investigated, i.e. its influence on viral replication cycle, to determine the potential as an antiviral preparation. At the highest non-cytotoxic concentration, the ELA blend demonstrated a 87.5 % reduction in viral titer when administered simultaneously with HCoV-OC43. It emphasize potential ability of the preparation to block viral entry to the host cells. At the same time, ELA blend did not express virucidal activity, i.e. inactivation of free viral particles, against HCoV-OC43. In conclusion, ELA blend displayed antiviral activity and exhibited immunomodulatory and antioxidant effects. Based on these findings, it can be concluded that ELA blend has potential for the prevention and treatment of viral infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA