Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Nanomedicine (Lond) ; : 1-18, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056303

RESUMEN

Aim: To synthesize host-specific serum protein stabilized silver quantum clusters and assess their preclinical safety as potential antibacterial agents. Materials & methods: Ag-QC-NanoSera (Ag-QCNS) were synthesized using bovine, human and murine sera. Antibacterial efficacy was evaluated against E. coli (including antibiotic-resistant strain), S. aureus and P. aeruginosa. Biocompatibility, hemocompatibility and antibacterial mechanism were also investigated. Preclinical safety and biodistribution of autologous Ag-QCNS were assessed in BALB/c mice over 28 days. Results: Ag-QCNS showed high biocompatibility, hemocompatibility and high antibacterial activity at ∼12.72 µg/ml Ag equivalent. Intracellular ROS and bacterial membrane damage were confirmed as antibacterial mechanism. Ag-QCNS were established as preclinically safe. Conclusion: Ag-QCNS demonstrate potential as next-generation host-specific nanotheranostic antibacterial agents, enhancing the safety and efficacy while combating antibiotic resistance.


[Box: see text].

2.
ACS Appl Mater Interfaces ; 16(25): 31997-32016, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869318

RESUMEN

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5ß1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pulmonares , Ratones Endogámicos BALB C , Ratones Desnudos , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Ratones , Células A549 , Nanopartículas Magnéticas de Óxido de Hierro/química
3.
J Extracell Vesicles ; 13(5): e12454, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760878

RESUMEN

Extracellular vesicles (EVs) are emerging as a promising drug delivery vehicle as they are biocompatible and capable of targeted delivery. However, clinical translation of EVs remains challenging due to the lack of standardized and scalable manufacturing protocols to consistently isolate small EVs (sEVs) with both high yield and high purity. The heterogenous nature of sEVs leading to unknown composition of biocargos causes further pushback due to safety concerns. In order to address these issues, we developed a robust quality-controlled multi-stage process to produce and isolate sEVs from human embryonic kidney HEK293F cells. We then compared different 2-step and 3-step workflows for eliminating protein impurities and cell-free nucleic acids to meet acceptable limits of regulatory authorities. Our results showed that sEV production was maximized when HEK293F cells were grown at high-density stationary phase in semi-continuous culture. The novel 3-step workflow combining tangential flow filtration, sucrose-cushion ultracentrifugation and bind-elute size-exclusion chromatography outperformed other methods in sEV purity while still preserved high yield and particle integrity. The purified HEK293F-derived sEVs were thoroughly characterized for identity including sub-population analysis, content profiling including proteomics and miRNA sequencing, and demonstrated excellent preclinical safety profile in both in-vitro and in-vivo testing. Our rigorous enrichment workflow and comprehensive characterization will help advance the development of EVs, particularly HEK293F-derived sEVs, to be safe and reliable drug carriers for therapeutic applications.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Células HEK293 , Proteómica/métodos , Flujo de Trabajo , Ultracentrifugación/métodos , MicroARNs/metabolismo
4.
Toxicol Res (Camb) ; 13(2): tfae059, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655145

RESUMEN

The modified phytochemical derivative, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12), has been identified as a potential therapeutic platform based on its capacity to improve disease outcomes in models of neurodegeneration and cancer. However, comprehensive safety studies investigating pathology and off-target binding have not been conducted. To address this, we administered C-DIM12 orogastrically to outbred male CD-1 mice for 7 days (50 mg/kg/day, 200 mg/kg/day, and 300 mg/kg/day) and investigated changes in hematology, clinical chemistry, and whole-body tissue pathology. We also delivered a single dose of C-DIM12 (1 mg/kg, 5 mg/kg, 25 mg/kg, 100 mg/kg, 300 mg/kg, 1,000 mg/kg) orogastrically to male and female beagle dogs and investigated hematology and clinical chemistry, as well as plasma pharmacokinetics over 48-h. Consecutive in-vitro off-target binding through inhibition was performed with 10 µM C-DIM12 against 68 targets in tandem with predictive off-target structural binding capacity. These data show that the highest dose C-DIM12 administered in each species caused modest liver pathology in mouse and dog, whereas lower doses were unremarkable. Off-target screening and predictive modeling of C-DIM12 show inhibition of serine/threonine kinases, calcium signaling, G-protein coupled receptors, extracellular matrix degradation, and vascular and transcriptional regulation pathways. Collectively, these data demonstrate that low doses of C-DIM12 do not induce pathology and are capable of modulating targets relevant to neurodegeneration and cancer.

5.
Am J Alzheimers Dis Other Demen ; 39: 15333175231222695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38183177

RESUMEN

Introduction: To evaluate whether both acute and chronic low-intensity pulsed ultrasound (LIPUS) affect brain functions of healthy male and female mice. Methods: Ultrasound (frequency: 1.5 MHz; pulse: 1.0 kHz; spatial average temporal average (SATA) intensity: 25 mW/cm2; and pulse duty cycle: 20%) was applied at mouse head in acute test for 20 minutes, and in chronic experiment for consecutive 10 days, respectively. Behaviors were then evaluated. Results: Both acute and chronic LIPUS at 25 mW/cm2 exposure did not affect the abilities of movements, mating, social interaction, and anxiety-like behaviors in the male and female mice. However, physical restraint caused struggle-like behaviors and short-time memory deficits in chronic LIPUS groups in the male mice. Conclusion: LIPUS at 25 mW/cm2 itself does not affect brain functions, while physical restraint for LIPUS therapy elicits struggle-like behaviors in the male mice. An unbound helmet targeted with ultrasound intensity at 25-50 mW/cm2 is proposed for clinical brain disease therapy.


Asunto(s)
Ansiedad , Cuidados a Largo Plazo , Femenino , Masculino , Animales , Ratones , Humanos , Ansiedad/terapia , Frecuencia Cardíaca , Trastornos de la Memoria , Ondas Ultrasónicas
6.
Toxicol Sci ; 198(2): 316-327, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38191231

RESUMEN

Cardiovascular toxicity is one of the more common causes of attrition in preclinical and clinical drug development. Preclinical cardiovascular safety assessment involves numerous in vitro and in vivo endpoints which are being continually reviewed and improved to lower the incidence of cardiovascular toxicity that manifests only after the initiation of clinical trials. An example of notable preclinical toxicity is necrosis in the papillary muscle of the left ventricle in dogs that is induced by exaggerated pharmacological effects of vasodilators or positive inotropic/vasodilating off-target drug effects. Two distinct, small-molecule inhibitors that target an intracellular kinase, Compound A and Compound B, were profiled in 2-week dose-range finding and 4-week toxicity studies. Serum cardiac troponin (cTnI) was evaluated after a single dose and after 2-week and 4-week repeat dose studies with each kinase inhibitor. Acute effects on hemodynamic (heart rate, blood pressures, left ventricular contractility) and electrocardiographic (QTcV, PR, QRS intervals) endpoints by each inhibitor were assessed in an anesthetized dog cardiovascular model. Cardiovascular degeneration/necrosis with and without fibrosis was observed in dogs and correlated to increases in serum cTnI in repeat-dose toxicity studies. At the same doses used in toxicologic assessments, both kinase inhibitors produced sustained increases in heart rate, left ventricular contractility, and cardiac output, and decreases in mean arterial pressure. Cardiac pathology findings associated with these 2 kinase inhibitors were accompanied not only by cardiac troponin elevations but also associated with hemodynamic changes, highlighting the importance of the link of the physiologic-toxicologic interplay in cardiovascular safety assessment.


Asunto(s)
Sistema Cardiovascular , Contracción Miocárdica , Animales , Perros , Hemodinámica , Frecuencia Cardíaca , Necrosis , Troponina/farmacología
7.
Cell Transplant ; 32: 9636897231213271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059278

RESUMEN

Mesenchymal stem cells (MSCs) have become a promising therapeutic method. More safety data are needed to support clinical studies in more diseases. The aim of this study was to investigate the short- and long-term safety of human bone marrow-derived MSCs (hBMMSCs) in mice. In the present study, we injected control (saline infusion only), low (1.0 × 106/kg), medium (1.0 × 107/kg), and high (1.0 × 108/kg) concentrations of hBMMSCs into BALB/c mice. The safety of the treatment was evaluated by observing changes in the general condition, hematology, biochemical indices, pathology of vital organs, lymphocyte subsets, and immune factor levels on days 14 and 150. In the short-term toxicity test, no significant abnormalities were observed in the hematological and biochemical parameters between the groups injected with hBMMSCs, and no significant damage was observed in the major organs, such as the liver and lung. In addition, no significant differences were observed in the toxicity-related parameters among the groups in the long-term toxicity test. Our study also demonstrates that mice infused with different doses of hBMMSCs do not show abnormal immune responses in either short-term or long-term experiments. We confirmed that hBMMSCs are safe through a 150-day study, demonstrating that this is a safe and promising therapy and offering preliminary safety evidence to promote future clinical applications of hBMMSCs in different diseases.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Células Madre Mesenquimatosas/fisiología , Médula Ósea , Hígado , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Células de la Médula Ósea
8.
Expert Opin Drug Discov ; 18(12): 1313-1320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700537

RESUMEN

INTRODUCTION: Drug-induced liver injury (DILI) is a potentially lethal condition that heavily impacts the pharmaceutical industry, causing approximately 21% of drug withdrawals and 13% of clinical trial failures. Recent evidence suggests that the use of Liver-Chip technology in preclinical safety testing may significantly reduce DILI-related clinical trial failures and withdrawals. However, drug developers and regulators would benefit from guidance on the integration of Liver-Chip data into decision-making processes to facilitate the technology's adoption. AREAS COVERED: This perspective builds on the findings of the performance assessment of the Emulate Liver-Chip in the context of DILI prediction and introduces two new decision-support frameworks: the first uses the Liver-Chip's quantitative output to elucidate DILI severity and enable more nuanced risk analysis; the second integrates Liver-Chip data with standard animal testing results to help assess whether to progress a candidate drug into clinical trials. EXPERT OPINION: There is now strong evidence that Liver-Chip technology could significantly reduce the incidence of DILI in drug development. As this is a patient safety issue, it is imperative that developers and regulators explore the incorporation of the technology. The frameworks presented enable the integration of the Liver-Chip into various stages of preclinical development in support of safety assessment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Preparaciones Farmacéuticas
9.
Pharmaceutics ; 15(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242774

RESUMEN

Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.

10.
Drug Discov Today ; 28(8): 103643, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244567

RESUMEN

Targeted protein degraders (TPDs), which act through the ubiquitin proteasome system (UPS), are one of the newest small-molecule drug modalities. Since the initiation of the first clinical trial in 2019, investigating the use of ARV-110 in patients with cancer, the field has rapidly expanded. Recently, some theoretical absorption, distribution, metabolism, and excretion (ADME) and safety challenges have been posed for the modality. Using these theoretical concerns as a framework, the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ Consortium) Protein Degrader Working Group (WG) conducted two surveys to benchmark current preclinical practices for TPDs. Conceptually, the safety assessment of TPDs is the same as for standard small molecules; however, the techniques used, assay conditions/study endpoints, and timing of assessments might need to be modified to address differences in mode of action of the class.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Quimera Dirigida a la Proteólisis , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo
11.
Toxicol Pathol ; 51(1-2): 77-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37083209

RESUMEN

Nonclinical toxicity testing (GLP) of prophylactic vaccines to support human clinical trials is outlined in the World Health Organization nonclinical vaccine-development guidelines, which are followed by most regulatory agencies globally. Vaccine GLP toxicity studies include at least two groups: a buffer control (often phosphate-buffered saline) group and a highest anticipated clinical dose formulation group. However, studies may include additional groups, including lower-dose formulation groups and adjuvant-containing formulation control groups. World Health Organization guidelines touch upon expectations for dose group and tissue selection for microscopic evaluation, but there is variation in the interpretation of this aspect of these guidelines between vaccine developers. This opinion piece proposes a scientifically based approach for defining appropriate groups to evaluate in the dosing and recovery phases in nonclinical vaccine toxicity studies, as well as suggestions on selecting tissues for microscopic evaluation at the recovery phase of studies to promote alignment between vaccine manufacturers.


Asunto(s)
Pruebas de Toxicidad , Vacunas , Humanos , Pruebas de Toxicidad/métodos , Vacunas/toxicidad
12.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039078

RESUMEN

Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.

13.
Front Immunol ; 14: 1107848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936963

RESUMEN

Introduction: Humanized mice are emerging as valuable models to experimentally evaluate the impact of different immunotherapeutics on the human immune system. These immunodeficient mice are engrafted with human cells or tissues, that then mimic the human immune system, offering an alternative and potentially more predictive preclinical model. Immunodeficient NSG mice engrafted with human CD34+ cord blood stem cells develop human T cells educated against murine MHC. However, autoimmune graft versus host disease (GvHD), mediated by T cells, typically develops 1 year post engraftment. Methods: Here, we have used the development of GvHD in NSG mice, using donors with HLA alleles predisposed to autoimmunity (psoriasis) to weight in favor of GvHD, as an endpoint to evaluate the relative potency of monoclonal and BiSpecific antibodies targeting PD-1 and CTLA-4 to break immune tolerance. Results: We found that treatment with either a combination of anti-PD-1 & anti-CTLA-4 mAbs or a quadrivalent anti-PD-1/CTLA-4 BiSpecific (MEDI8500), had enhanced potency compared to treatment with anti-PD-1 or anti-CTLA-4 monotherapies, increasing T cell activity both in vitro and in vivo. This resulted in accelerated development of GvHD and shorter survival of the humanized mice in these treatment groups commensurate with their on target activity. Discussion: Our findings demonstrate the potential of humanized mouse models for preclinical evaluation of different immunotherapies and combinations, using acceleration of GvHD development as a surrogate of aggravated antigenic T-cell response against host.


Asunto(s)
Enfermedad Injerto contra Huésped , Inhibidores de Puntos de Control Inmunológico , Humanos , Animales , Ratones , Ratones SCID , Linfocitos T , Autoinmunidad
14.
Molecules ; 28(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903618

RESUMEN

The leaves of Asphodelus bento-rainhae subsp. bento-rainhae, an endemic Portuguese species, and Asphodelus macrocarpus subsp. macrocarpus have been used as food, and traditionally as medicine, for treating ulcers, urinary tract, and inflammatory disorders. The present study aims to establish the phytochemical profile of the main secondary metabolites, together with the antimicrobial, antioxidant and toxicity assessments of both Asphodelus leaf 70% ethanol extracts. Phytochemical screenings were conducted by the TLC and LC-UV/DAD-ESI/MS chromatographic technique, and quantification of the leading chemical classes was performed by spectrophotometric methods. Liquid-liquid partitions of crude extracts were obtained using ethyl ether, ethyl acetate, and water. For in vitro evaluations of antimicrobial activity, the broth microdilution method, and for the antioxidant activity, the FRAP and DPPH methods were used. Genotoxicity and cytotoxicity were assessed by Ames and MTT tests, respectively. Twelve known compounds including neochlorogenic acid, chlorogenic acid, caffeic acid, isoorientin, p-coumaric acid, isovitexin, ferulic acid, luteolin, aloe-emodin, diosmetin, chrysophanol, and ß-sitosterol were identified as the main marker compounds, and terpenoids and condensed tannins were found to be the major class of secondary metabolites of both medicinal plants. The ethyl ether fractions demonstrated the highest antibacterial activity against all the Gram-positive microorganisms, (MIC value of 62 to 1000 µg/mL), with aloe-emodin as one of the main marker compounds highly active against Staphylococcus epidermidis (MIC value of 0.8 to 1.6 µg/mL). Ethyl acetate fractions exhibited the highest antioxidant activity (IC50 of 800 to 1200 µg/mL, respectively). No cytotoxicity (up to 1000 µg/mL) or genotoxicity/mutagenicity (up to 5 mg/plate, with/without metabolic activation) were detected. The obtained results contribute to the knowledge of the value and safety of the studied species as herbal medicines.


Asunto(s)
Antiinfecciosos , Emodina , Plantas Medicinales , Extractos Vegetales/química , Antioxidantes , Portugal , Plantas Medicinales/química , Antiinfecciosos/química , Fitoquímicos/química , Etanol , Éteres de Etila , Pruebas de Sensibilidad Microbiana
15.
Bio Protoc ; 13(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36789090

RESUMEN

Traditional drug safety assessments often fail to predict complications in humans, especially when the drug targets the immune system. Rodent-based preclinical animal models are often ill-suited for predicting immunotherapy-mediated adverse events in humans, in part because of the fundamental differences in immunological responses between species and the human relevant expression profile of the target antigen, if it is expected to be present in normal, healthy tissue. While human-relevant cell-based models of tissues and organs promise to bridge this gap, conventional in vitro two-dimensional models fail to provide the complexity required to model the biological mechanisms of immunotherapeutic effects. Also, like animal models, they fail to recapitulate physiologically relevant levels and patterns of organ-specific proteins, crucial for capturing pharmacology and safety liabilities. Organ-on-Chip models aim to overcome these limitations by combining micro-engineering with cultured primary human cells to recreate the complex multifactorial microenvironment and functions of native tissues and organs. In this protocol, we show the unprecedented capability of two human Organs-on-Chip models to evaluate the safety profile of T cell-bispecific antibodies (TCBs) targeting tumor antigens. These novel tools broaden the research options available for a mechanistic understanding of engineered therapeutic antibodies and for assessing safety in tissues susceptible to adverse events. Graphical abstract Figure 1. Graphical representation of the major steps in target-dependent T cell-bispecific antibodies engagement and immunomodulation, as performed in the Colon Intestine-Chip.

16.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768532

RESUMEN

Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Hidrogeles/química , Medicina Regenerativa , Tejido Adiposo/metabolismo , Fibrina/metabolismo , Ratones Desnudos , Distribución Tisular , Diferenciación Celular
17.
Nucleic Acid Ther ; 33(1): 1-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579950

RESUMEN

The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Animales , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Preparaciones Farmacéuticas , Evaluación Preclínica de Medicamentos
18.
Biomed Chromatogr ; 37(7): e5553, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36415962

RESUMEN

Toxicokinetics (TK) is an integral part of nonclinical (preclinical) safety assessment of small-molecule new chemical entities in drug development. It is employed to describe the systemic exposure of a drug candidate and/or its important metabolite(s) achieved in study animals and elucidate the relationship (proportional, over-proportional, or under-proportional) between systemic exposure and dose administered and the associated differences/similarities between male and female animals along with the possible accumulation/induction. TK data and the derived parameters are employed to propose safe starting doses for clinical use of the new drug candidate through proper extrapolation of findings in study animals to humans. This review has attempted to highlight the health authority expectations on TK assessment in supporting preclinical safety profiling of new chemical entities. A robust TK assessment requires good understanding of absorption, distribution, metabolism, and elimination processes of drug candidate, adequate TK sampling (e.g., controls where relevant), implementation of fit-for-purpose bioanalytical methods (validated or scientifically qualified) along with necessary measures to prevent mis-dosing or ex vivo contamination, and establishment of stability of the drug candidate and/or its metabolite(s) in the intended species matrix to ensure the reliability of bioanalytical and TK data. The latter provides a vital link between animal experiments and human safety.


Asunto(s)
Desarrollo de Medicamentos , Manejo de Especímenes , Animales , Masculino , Humanos , Femenino , Toxicocinética , Reproducibilidad de los Resultados
19.
Toxicol Pathol ; 51(7-8): 414-431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38380881

RESUMEN

Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.


Asunto(s)
Neuropatología , Ácidos Nucleicos , Encéfalo , Médula Espinal , Nervio Ciático
20.
Int J Toxicol ; 41(6): 476-487, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36069520

RESUMEN

Recent advances in human pluripotent stem cell (hPSC)-derived cell therapies and genome editing technologies such as CRISPR/Cas9 make regenerative medicines promising for curing diseases previously thought to be incurable. However, the possibility of off-target effects during genome editing and the nature of hPSCs, which can differentiate into any cell type and infinitely proliferate, inevitably raises concerns about tumorigenicity. Tumorigenicity acts as a major obstacle to the application of hPSC-derived and gene therapy products in clinical practice. Thus, regulatory authorities demand mandatory tumorigenicity testing as a key pre-clinical safety step for the products. In the tumorigenicity testing, regulatory guidelines request to include human cancer cell line injected positive control group (PC) animals, which must form tumors. As the validity of the whole test is determined by the tumor-forming rates (typically above 90%) of PC animals, establishing the stable tumorigenic condition of PC animals is critical for successful testing. We conducted several studies to establish the proper positive control conditions, including dose, administration routes, and the selection of cell lines, in compliance with Good Laboratory Practice (GLP) regulations and/or guidelines, which are essential for pre-clinical safety tests of therapeutic materials. We expect that our findings provide insights and practical information to create a successful tumorigenicity test and its guidelines.


Asunto(s)
Células Madre Pluripotentes , Animales , Carcinogénesis , Pruebas de Carcinogenicidad , Línea Celular , Humanos , Ratones , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...