Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Pers Med ; 14(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793045

RESUMEN

Pancreatic cancer is one of the most aggressive, heterogeneous, and fatal types of human cancer; therefore, more effective therapeutic drugs are urgently needed. Human epidermal growth factor receptor 2 (HER2) overexpression and amplification have been identified as a cornerstone in this pathology. The aim of this review is to identify HER2 membrane overexpression in relation to pancreatic cancer pathways that can be used in order to develop a targeted therapy. After searching the keywords, 174 articles were found during a time span of 10 years, between 2013 and 2023, but only twelve scientific papers were qualified for this investigation. The new era of biomolecular research found a significant relationship between HER2 overexpression and pancreatic cancer cells in 25-30% of cases. The variables are dependent on tumor-derived cells, with differences in receptor overexpression between PDAC (pancreatic ductal adenocarcinoma), BTC (biliary tract cancer), ampullary carcinoma, and PNETs (pancreatic neuroendocrine tumors). HER2 overexpression is frequently encountered in human pancreatic carcinoma cell lines, and the ERBB family is one of the targets in the near future of therapy, with good results in phase I, II, and III studies evaluating downregulation and tumor downstaging, respectively.

2.
Biochem Genet ; 62(2): 594-620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37486509

RESUMEN

The leading cause of mortality in patients with breast cancer is metastasis, and bone morphogenetic protein (BMP) signaling activation regulates metastasis in breast cancer. This study explored the genetic and epigenetic modification of BMP receptor genes associated with metastatic breast cancer cells using bioinformatics. The genetic and epigenetic alterations of BMP receptors (BMPR1A, BMPR1B, BMPR2, ACVR2A, ACVR1, ACVR2B, ACVR1B, HJV, and ENG) were examined using cBioportal and methSurv, respectively. mRNA expression was analyzed using TNM plot and bcgenex, and protein expression was studied using Human Protein Atlas. Prognostic value and ROC were investigated using Kaplan-Meier (KM) and ROC plot, respectively. Finally, mutant function was predicted using several databases, including PolyPhen-2, FATHMM, Mutation Assessor, and PredictSNP. Oncoprint analysis showed genetic alterations in BMPR1A (39%), BMPR1B (13%), BMPR2 (34%), ACVR2A (14%), ACVR1 (7%), ACVR2B (13), ACVR1B (35%), HJV (40%), and ENG (33%) across the patients with breast cancer in The Metastatic Breast Cancer Project. The mRNA and protein levels of BMPR2 were increased in metastatic breast tumor tissues compared with those in normal and breast tumor tissues. BMPR1A and BMPR2 showed the highest and lowest levels of epigenetic alterations among the BMP receptors, respectively. The patients with breast cancer who had low levels of BMPR2 had a better overall survival (OS) than those with high levels of BMPR2. Functional mutation prediction showed that mutants in BMPR2 (R272L, E274K, and L685F), ACVR2A (S127L), and ACVR1B (R484H), are deleterious, probably damaging, and possess a cancer phenotype. ROC plot revealed no BMP receptors correlated with endocrine therapy sensitivity. BMPR1B, BMPR2, and ACVR2A levels were significantly linked as moderate prediction of anti-HER2, BMPR2, and ACVR1B demonstrated moderate predictive potential for chemotherapy sensitivity. This study contributed in fully comprehending the significance of genetic and epigenetic alterations in BMP receptors and BMP signaling in metastatic breast cancer cells for the development of breast cancer treatment plans.

3.
ACS Sens ; 8(10): 3914-3922, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37737572

RESUMEN

The misuse of cannabinoids and their synthetic variants poses significant threats to public health, necessitating the development of advanced techniques for detection of these compounds in biological or environmental samples. Existing methods face challenges like lengthy sample pretreatment and laborious antifouling steps. Herein, we present a novel sensing platform using magnetic nanorods coated with zwitterionic polymers for the simple, rapid, and sensitive detection of cannabinoids in biofluids. Our technique utilizes the engineered derivatives of the plant hormone receptor Pyrabactin Resistance 1 (PYR1) as drug recognition elements and employs the chemical-induced dimerization (CID) mechanism for signal development. Additionally, the magnetic nanorods facilitate efficient target capture and reduce the assay duration. Moreover, the zwitterionic polymer coating exhibits excellent antifouling capability, preserving excellent sensor performance in complex biofluids. Our sensors detect cannabinoids in undiluted biofluids like serum, saliva, and urine with a low limit of detection (0.002 pM in saliva and few pM in urine and serum) and dynamic ranges spanning up to 9 orders of magnitude. Moreover, the PYR1 derivatives demonstrate high specificity even in the presence of multiple interfering compounds. This work opens new opportunities for sensor development, showcasing the excellent performance of antifouling magnetic nanorods that can be compatible with different recognition units, including receptors and antibodies, for detecting a variety of targets.


Asunto(s)
Incrustaciones Biológicas , Cannabinoides , Reguladores del Crecimiento de las Plantas , Incrustaciones Biológicas/prevención & control , Polímeros , Fenómenos Magnéticos
4.
Biomedicines ; 11(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37509577

RESUMEN

Throughout a vertebrate organism's lifespan, skeletal muscle mass and function progressively decline. This age-related condition is termed sarcopenia. In humans, sarcopenia is associated with risk of falling, cardiovascular disease, and all-cause mortality. As the world population ages, projected to reach 2 billion older adults worldwide in 2050, the economic burden on the healthcare system is also projected to increase considerably. Currently, there are no pharmacological treatments for sarcopenia, and given the long-term nature of aging studies, high-throughput chemical screens are impractical in mammalian models. Zebrafish is a promising, up-and-coming vertebrate model in the field of sarcopenia that could fill this gap. Here, we developed a surface electrical impedance myography (sEIM) platform to assess skeletal muscle health, quantitatively and noninvasively, in adult zebrafish (young, aged, and genetic mutant animals). In aged zebrafish (~85% lifespan) as compared to young zebrafish (~20% lifespan), sEIM parameters (2 kHz phase angle, 2 kHz reactance, and 2 kHz resistance) robustly detected muscle atrophy (p < 0.000001, q = 0.000002; p = 0.000004, q = 0.000006; p = 0.000867, q = 0.000683, respectively). Moreover, these same measurements exhibited strong correlations with an established morphometric parameter of muscle atrophy (myofiber cross-sectional area), as determined by histological-based morphometric analysis (r = 0.831, p = 2 × 10-12; r = 0.6959, p = 2 × 10-8; and r = 0.7220; p = 4 × 10-9, respectively). Finally, the genetic deletion of gpr27, an orphan G-protein coupled receptor (GPCR), exacerbated the atrophy of skeletal muscle in aged animals, as evidenced by both sEIM and histology. In conclusion, the data here show that surface EIM techniques can effectively discriminate between healthy young and sarcopenic aged muscle as well as the advanced atrophied muscle in the gpr27 KO animals. Moreover, these studies show how EIM values correlate with cell size across the animals, making it potentially possible to utilize sEIM as a "virtual biopsy" in zebrafish to noninvasively assess myofiber atrophy, a valuable measure for muscle and gerontology research.

5.
Eur Heart J ; 44(29): 2763-2783, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279475

RESUMEN

AIMS: Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis. METHODS AND RESULTS: Immunostaining revealed eosinophil accumulation in human and mouse atherosclerotic lesions. Eosinophil deficiency in ΔdblGATA mice slowed atherogenesis with increased lesion smooth muscle cell (SMC) content and reduced calcification. This protection in ΔdblGATA mice was muted when mice received donor eosinophils from wild-type (WT), Il4-/-, and Il13-/- mice or mouse eosinophil-associated-ribonuclease-1 (mEar1), a murine homologue of ECP. Eosinophils or mEar1 but not interleukin (IL) 4 or IL13 increased the calcification of SMC from WT mice but not those from Runt-related transcription factor-2 (Runx2) knockout mice. Immunoblot analyses showed that eosinophils and mEar1 activated Smad-1/5/8 but did not affect Smad-2/3 activation or expression of bone morphogenetic protein receptors (BMPR-1A/1B/2) or transforming growth factor (TGF)-ß receptors (TGFBR1/2) in SMC from WT and Runx2 knockout mice. Immunoprecipitation showed that mEar1 formed immune complexes with BMPR-1A/1B but not TGFBR1/2. Immunofluorescence double-staining, ligand binding, and Scatchard plot analysis demonstrated that mEar1 bound to BMPR-1A and BMPR-1B with similar affinity. Likewise, human ECP and eosinophil-derived neurotoxin (EDN) also bound to BMPR-1A/1B on human vascular SMC and promoted SMC osteogenic differentiation. In a cohort of 5864 men from the Danish Cardiovascular Screening trial and its subpopulation of 394 participants, blood eosinophil counts and ECP levels correlated with the calcification scores of different arterial segments from coronary arteries to iliac arteries. CONCLUSION: Eosinophils release cationic proteins that can promote SMC calcification and atherogenesis using the BMPR-1A/1B-Smad-1/5/8-Runx2 signalling pathway.


Asunto(s)
Aterosclerosis , Calcificación Vascular , Masculino , Humanos , Animales , Ratones , Eosinófilos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Sanguíneas/análisis , Osteogénesis , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Interleucina-13/metabolismo , Proteínas en los Gránulos del Eosinófilo/metabolismo , Ribonucleasas/metabolismo , Aterosclerosis/metabolismo , Ratones Noqueados
6.
Curr Protein Pept Sci ; 24(4): 288-295, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36924089

RESUMEN

Golgi SNARE, with a size of 28 kD (GS28), is a transmembrane protein and mainly localizes to the Golgi apparatus. It is considered a core part of the Golgi SNARE complex in the Endoplasmic Reticulum (ER)-Golgi transport and regulates the docking and fusion of transport vesicles effectively. In recent years, increasing studies have indicated that various intracellular transport events are regulated by different GS28-based SNARE complexes. Moreover, GS28 is also involved in numerous functional signaling pathways related to different diseases via interacting with other SNARE proteins and affecting protein maturation and secretion. However, the precise function of GS28 in different disease models and the regulatory network remains unclear. In this review, we mainly provide a concise overview of the function and regulation of GS28 in vesicle trafficking and diseases and summarize the signaling pathways regarding potential mechanisms. Although some critical points about the significance of GS28 in disease treatment still need further investigation, more reliable biotechnical or pharmacological strategies may be developed based on a better understanding of the diverse role of GS28 in vesicle trafficking and other biological processes.


Asunto(s)
Aparato de Golgi , Proteínas SNARE , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Aparato de Golgi/metabolismo , Retículo Endoplásmico/metabolismo , Transporte Biológico , Fusión de Membrana , Transporte de Proteínas/fisiología
7.
Circ Res ; 132(5): 545-564, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744494

RESUMEN

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratones , Arrestina beta 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/metabolismo , ARN/metabolismo
8.
Neurobiol Pain ; 12: 100095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720640

RESUMEN

Despite recent progress regarding inexpensive medical approaches, many individuals suffer from moderate to severe pain globally. The discovery and advent of exosomes, as biological nano-sized vesicles, has revolutionized current knowledge about underlying mechanisms associated with several pathological conditions. Indeed, these particles are touted as biological bio-shuttles with the potential to carry specific signaling biomolecules to cells in proximity and remote sites, maintaining cell-to-cell communication in a paracrine manner. A piece of evidence points to an intricate relationship between exosome biogenesis and autophagy signaling pathways at different molecular levels. A close collaboration of autophagic response with exosome release can affect the body's hemostasis and physiology of different cell types. This review is a preliminary attempt to highlight the possible interface of autophagy flux and exosome biogenesis on pain management with a special focus on neuropathic pain. It is thought that this review article will help us to understand the interplay of autophagic response and exosome biogenesis in the management of pain under pathological conditions. The application of therapies targeting autophagy pathway and exosome abscission can be an alternative strategy in the regulation of pain.

9.
Med Res Rev ; 42(4): 1661-1703, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561109

RESUMEN

Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.


Asunto(s)
Receptores Purinérgicos P1 , Receptores Purinérgicos , Adenosina , Adenosina Trifosfato/metabolismo , Manejo de la Enfermedad , Humanos , Ligandos , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P1/metabolismo
10.
J Clin Periodontol ; 49(9): 945-956, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35634660

RESUMEN

AIM: To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signalling in Axin2-expressing cells during periodontium development. MATERIALS AND METHODS: Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-computed tomography, calcein green, and alizarin red double-labelling, scanning electron microscopy, and histological and immunostaining assays, were used to analyse periodontal phenotypes and molecular mechanisms. RESULTS: X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibres. CONCLUSIONS: Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signalling.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Ligamento Periodontal , Animales , Proteína Axina/genética , Proteínas Morfogenéticas Óseas , Cementogénesis , Cemento Dental , Ratones , Ligamento Periodontal/crecimiento & desarrollo , Ligamento Periodontal/metabolismo , Periodoncio , Transducción de Señal , Microtomografía por Rayos X
11.
Biophys Rev ; 14(6): 1349-1358, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36659995

RESUMEN

Multicanonical molecular dynamics (McMD)-based dynamic docking is a powerful tool to not only predict the native binding configuration between two flexible molecules, but it can also be used to accurately simulate the binding/unbinding pathway. Furthermore, it can also predict alternative binding sites, including allosteric ones, by employing an exhaustive sampling approach. Since McMD-based dynamic docking accurately samples binding/unbinding events, it can thus be used to determine the molecular mechanism of binding between two molecules. We developed the McMD-based dynamic docking methodology based on the powerful, but woefully underutilized McMD algorithm, combined with a toolset to perform the docking and to analyze the results. Here, we showcase three of our recent works, where we have applied McMD-based dynamic docking to advance the field of computational drug design. In the first case, we applied our method to perform an exhaustive search between Hsp90 and one of its inhibitors to successfully predict the native binding configuration in its binding site, as we refined our analysis methods. For our second case, we performed an exhaustive search of two medium-sized ligands and Bcl-xL, which has a cryptic binding site that differs greatly between the apo and holo structures. Finally, we performed a dynamic docking simulation between a membrane-embedded GPCR molecule and a high affinity ligand that binds deep within its receptor's pocket. These advanced simulations showcase the power that the McMD-based dynamic docking method has, and provide a glimpse of the potential our methodology has to unravel and solve the medical and biophysical issues in the modern world. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-01010-z.

12.
Front Oncol ; 11: 608239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745928

RESUMEN

BACKGROUND: Bone morphogenetic proteins (BMPs) regulate tumor progression via binding to their receptors (BMPRs). However, the expression and clinical significance of BMPs/BMPRs in lung adenocarcinoma remain unclear due to a lack of systematic studies. METHODS: This study screened differentially expressed BMPs/BMPRs (deBMPs/BMPRs) in a training dataset combining TCGA-LUAD and GTEx-LUNG and verified them in four GEO datasets. Their prognostic value was evaluated via univariate and multivariate Cox regression analyses. LASSO was performed to construct an initial risk model. Subsequently, after weighted gene co-expression network analysis (WGCNA), differential expression analysis, and univariate Cox regression analysis, hub genes co-expressed with differentially expressed BMPs/BMPRs were filtered out to improve the risk model and explore potential mechanisms. The improved risk model was re-established via LASSO combining hub genes with differentially expressed BMPs/BMPRs as the core. In the testing cohort including 93 lung adenocarcinoma patients, immunohistochemistry (IHC) was performed to verify BMP5 protein expression and its association with prognosis. RESULTS: BMP2, BMP5, BMP6, GDF10, and ACVRL1 were verified as downregulated in lung adenocarcinoma. Survival analysis identified BMP5 as an independent protective prognostic factor. We also found that BMP5 was significantly correlated with EGFR expression and mutations, suggesting that BMP5 may play a role in targeted therapy. The initial risk model containing only BMP5 showed a significant correlation (HR: 1.71, 95% CI: 1.28-2.28, p: 3e-04) but low prognostic accuracy (AUC of 1-year survival: 0.6, 3-year survival: 0.6, 5-year survival: 0.63). Seventy-nine hub genes co-expressed with BMP5 were identified, and their functions were enriched in cell migration and tumor metastasis. The re-established risk model showed greater prognostic correlation (HR: 2.58, 95% CI: 1.92-3.46, p: 0) and value (AUC of 1-year survival: 0.72, 3-year survival: 0.69, and 5-year survival: 0.68). IHC results revealed that BMP5 protein was also downregulated in lung adenocarcinoma and higher expression was markedly associated with better prognosis (HR: 0.44, 95% CI: 0.23-0.85, p: 0.0145). CONCLUSION: BMP5 is a potential crucial target for lung adenocarcinoma treatment based on significant differential expression and superior prognostic value.

13.
Biomed Rep ; 15(5): 95, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34631050

RESUMEN

Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.

14.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073226

RESUMEN

Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Madre Neoplásicas/citología , Serotonina/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Modelos Animales de Enfermedad , Docetaxel/administración & dosificación , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/metabolismo , Trasplante de Neoplasias , Fenotipo , Receptores de Serotonina/metabolismo , Inducción de Remisión , Sertralina/administración & dosificación , Transducción de Señal
15.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765440

RESUMEN

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Asunto(s)
Ácido Glutámico/metabolismo , Mastocitos/metabolismo , Neuronas/metabolismo , Piel/metabolismo , Animales , Células Cultivadas , Dermatitis/metabolismo , Dermatitis/patología , Toxina Diftérica/farmacología , Modelos Animales de Enfermedad , Femenino , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Células de Langerhans/citología , Células de Langerhans/efectos de los fármacos , Células de Langerhans/metabolismo , Mastocitos/citología , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Piel/patología , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacología
16.
Reprod Biol Endocrinol ; 19(1): 25, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602248

RESUMEN

BACKGROUND: Accumulating data indicate that sensory nerve derived neuropeptides such as substance P and calcitonin gene related-protein (CGRP) can accelerate the progression of endometriosis via their respective receptors, so can agonists to their respective receptors receptor 1 (NK1R), receptor activity modifying protein 1 (RAMP-1) and calcitonin receptor-like receptor (CRLR). Adrenergic ß2 receptor (ADRB2) agonists also can facilitate lesional progression. In contrast, women with endometriosis appear to have depressed vagal activity, concordant with reduced expression of α7 nicotinic acetylcholine receptor (α7nAChR). The roles of these receptors in adenomyosis are completely unknown. METHODS: Adenomyotic tissue samples from 30 women with adenomyosis and control endometrial tissue samples from 24 women without adenomyosis were collected and subjected to immunohistochemistry analysis of RAMP1, CRLR, NK1R, ADRB2 and α7nAChR, along with their demographic and clinical information. The extent of tissue fibrosis was evaluated by Masson trichrome staining. RESULTS: We found that the staining levels of NK1R, CRLR, RAMP1 and ADRB2 were all significantly elevated in adenomyotic lesions as compared with control endometrium. In contrast, α7nAChR staining levels were significantly reduced. The severity of dysmenorrhea correlated positively with lesional ADRB2 staining levels. CONCLUSIONS: Our results suggest that SP, CGRP and noradrenaline may promote, while acetylcholine may stall, the progression of adenomyosis through their respective receptors on adenomyotic lesions. Additionally, through the activation of the hypothalamic-pituitary-adrenal (HPA)-sympatho-adrenal-medullary (SAM) axes and the lesional overexpression of ADRB2, adenomyosis-associated dysmenorrhea and adenomyotic lesions may be mutually promotional, forming a viscous feed-forward cycle.


Asunto(s)
Adenomiosis/etiología , Neuropéptidos/fisiología , Receptores de Neurotransmisores/fisiología , Adenomiosis/metabolismo , Adenomiosis/patología , Adulto , Proteína Similar al Receptor de Calcitonina/metabolismo , Estudios de Casos y Controles , China , Endometrio/metabolismo , Endometrio/patología , Femenino , Humanos , Persona de Mediana Edad , Neuropéptidos/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Neurotransmisores/metabolismo , Transducción de Señal , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
17.
J Clin Endocrinol Metab ; 106(5): 1482-1490, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33512531

RESUMEN

CONTEXT: Fibrous dysplasia/McCune-Albright syndrome (FD/MAS) is a rare bone and endocrine disorder resulting in fractures, pain, and disability. There are no targeted or effective therapies to alter the disease course. Disease arises from somatic gain-of-function variants at the R201 codon in GNAS, replacing arginine by either cysteine or histidine. The relative pathogenicity of these variants is not fully understood. OBJECTIVE: This work aimed 1) to determine whether the most common GNAS variants (R201C and R201H) are associated with a specific clinical phenotype, and 2) to determine the prevalence of the most common GNAS variants in a large patient cohort. METHODS: This retrospective cross-sectional analysis measured the correlation between genotype and phenotype characterized by clinical, biochemical, and radiographic data. RESULTS: Sixty-one individuals were genotyped using DNA extracted from tissue or circulating cell-free DNA. Twenty-two patients (36.1%) had the R201C variant, and 39 (63.9%) had the R201H variant. FD skeletal disease burden, hypophosphatemia prevalence, fracture incidence, and ambulation status were similar between the 2 groups. There was no difference in the prevalence of endocrinopathies, ultrasonographic gonadal or thyroid abnormalities, or pancreatic involvement. There was a nonsignificant association of cancer with the R201H variant. CONCLUSION: There is no clear genotype-phenotype correlation in patients with the most common FD/MAS pathogenic variants. The predominance of the R201H variant observed in our cohort and reported in the literature indicates it is likely responsible for a larger burden of disease in the overall population of patients with FD/MAS, which may have important implications for the future development of targeted therapies.


Asunto(s)
Cromograninas/genética , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Poliostótica/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Adolescente , Adulto , Sustitución de Aminoácidos , Niño , Preescolar , Estudios Transversales , Femenino , Displasia Fibrosa Ósea/epidemiología , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Poliostótica/epidemiología , Displasia Fibrosa Poliostótica/patología , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Prevalencia , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Cancers (Basel) ; 12(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291506

RESUMEN

The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.

19.
Arterioscler Thromb Vasc Biol ; 40(11): 2605-2618, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32998516

RESUMEN

OBJECTIVE: Pulmonary arterial hypertension is a disease of proliferative vascular occlusion that is strongly linked to mutations in BMPR2-the gene encoding the BMPR-II (BMP [bone morphogenetic protein] type II receptor). The endothelial-selective BMPR-II ligand, BMP9, reverses disease in animal models of pulmonary arterial hypertension and suppresses the proliferation of healthy endothelial cells. However, the impact of BMPR2 loss on the antiproliferative actions of BMP9 has yet to be assessed. Approach and Results: BMP9 suppressed proliferation in blood outgrowth endothelial cells from healthy control subjects but increased proliferation in blood outgrowth endothelial cells from pulmonary arterial hypertension patients with BMPR2 mutations. This shift from growth suppression to enhanced proliferation was recapitulated in control human pulmonary artery endothelial cells following siRNA-mediated BMPR2 silencing, as well as in mouse pulmonary endothelial cells isolated from endothelial-conditional Bmpr2 knockout mice (Bmpr2EC-/-). BMP9-induced proliferation was not attributable to altered metabolic activity or elevated TGFß (transforming growth factor beta) signaling but was linked to the prolonged induction of the canonical BMP target ID1 in the context of BMPR2 loss. In vivo, daily BMP9 administration to neonatal mice impaired both retinal and lung vascular patterning in control mice (Bmpr2EC+/+) but had no measurable effect on mice bearing a heterozygous endothelial Bmpr2 deletion (Bmpr2EC+/-) and caused excessive angiogenesis in both vascular beds for Bmpr2EC-/- mice. CONCLUSIONS: BMPR2 loss reverses the endothelial response to BMP9, causing enhanced proliferation. This finding has potential implications for the proposed translation of BMP9 as a treatment for pulmonary arterial hypertension and suggests the need for focused patient selection in clinical trials.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/deficiencia , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Adulto , Anciano , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Estudios de Casos y Controles , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Factor 2 de Diferenciación de Crecimiento/toxicidad , Humanos , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Transducción de Señal , Adulto Joven
20.
Vaccines (Basel) ; 8(4)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036202

RESUMEN

Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and ßCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in ßIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in ßCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of ßSARS-CoV in 2002-2004 and ßMERS-CoV from 2012 to present. ßSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA