Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
1.
Bioresour Technol ; : 131404, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222858

RESUMEN

Photosynthetic biohybrid systems (PBSs) composed of semiconductor-microbial hybrids provide a novel approach for converting light into chemical energy. However, comprehending the intricate interactions between materials and microbes that lead to PBSs with high apparent quantum yields (AQY) is challenging. Machine learning holds promise in predicting these interactions. To address this issue, this study employs ensemble learning (ESL) based on Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting to predict AQY of PBSs utilizing a dataset comprising 15 influential factors. The ESL model demonstrates exceptional accuracy and interpretability (R2 value of 0.927), offering insights into the impact of these factors on AQY while facilitating the selection of efficient semiconductors. Furthermore, this research propose that efficient charge carrier separation and transfer at the bio-abiotic interface are crucial for achieving high AQY levels. This research provides guidance for selecting semiconductors suitable for productive PBSs while elucidating mechanisms underlying their enhanced efficiency.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39225925

RESUMEN

The removal kinetics of an aqueous mixture of thirteen antibiotics (i.e., ampicillin, cefuroxime, ciprofloxacin, flumequine, metronidazole, ofloxacin, oxytetracycline, sulfadimethoxine, sulfamethoxazole, sulfamethazine, tetracycline, trimethoprim and tylosin) by batch UVC and UVC/H2O2 processes has been modeled in this work. First, molar absorption coefficients (ε), direct quantum yields (Φ) and the rate constants of the reaction of antibiotics with hydroxyl radical (kHO•) (model inputs) were determined for each antibiotic and compared with literature data. The values of these parameters range from 0.3 to 21.8 mM-1 cm-1 for ε, < 0.01 to 67.8 mmol·E-1 for Φ and 3.8 × 109 to 1.7 × 1010 M-1 s-1 for kHO•. Second, a regression model was developed to compute the rate constants of the reactions of the antibiotics with singlet oxygen (k1O2) from experimental data obtained in batch UVC experiments treating a mixture of the antibiotics. k1O2 values in the 1-50 × 106 M-1 s-1 range were obtained for the antibiotics studied. Finally, a semi-empirical kinetic model comprising a set of ordinary differential equations was solved to simulate the evolution of the residual concentration of antibiotics and hydrogen peroxide (model outputs) in a completely mixed batch photoreactor. Model predictions were reasonably consistent with the experimental data. The kinetic model developed might be combined with computational fluid dynamics to predict process performance and energy consumption in UVC and UVC/H2O2 applications at full scale.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 124977, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39216146

RESUMEN

The phosphor with a highly condensed, rigid framework structure and a single crystallographic site often exhibit symmetrical narrow-band emission. It is challenging to achieve broadband emission by doping Eu2+ ions in similar structures. Here, we propose to control the occupation and quenching concentration of Eu2+ ions in a single-site matrix Sc2Si2O7 to increase efficiency and precise regulation of luminescence spectra substantially. The analysis of photoluminescence spectroscopy through steady-state, transient-state, and Gaussian fitting techniques has discovered two emission centers despite the presence of a single rare-earth substitution site. The theoretical calculations and bond valence sum subsequently prove that Eu2+ ions prefer substituting the Sc3+ and interval sites to emit intense cyan light. Under 340 nm excitation, broad cyan-emission (FWHM = 115 nm) is exhibited with a high quantum yield of 60.67 %. The present phosphor exhibits pronounced thermal stability, and the emission intensity can still keep 68.3 % at 170 °C compared to that at atmospheric temperature. The Sc2Si2O7: Eu2+ phosphor boasts exceptional potential as a highly efficient cyan component in full-spectrum WLEDs. By replacing the blue light component commonly found in WLEDs, the intelligent and healthy alternative Sc2Si2O7: Eu2+ phosphor can effectively decrease the harmful blue light. This work also highlights the critical need to analyze local phosphor distortions upon rare-earth substitution, especially in single crystallographic site structures.

4.
J Fluoresc ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153168

RESUMEN

The naphthalimide molecule (NAP) was successfully synthesized and characterized by spectroscopy techniques. The NAP probe was exposed to a solvatochromic and aggregation-induced emission (AIE) probe using UV-visible and PL spectroscopy. In this case, the increased polarity of the solvent shows that it is red-shifted. The probe emission, a sky blue to yellow-green color at hexane to DCM, exhibited an excellent quantum yield. Meanwhile, the high-polar solvents of DMF and DMSO had poor quantum yields. This probe NAP showed the aggregation-induced emission property dramatically enhanced the emissions (at 540 nm) from fw = 80-90%. NAP was conducted with two polar solvent vapors in hexane and chloroform to investigate VOCs in a further solid-state study. A real-life test paper kit NAP probe was prepared and investigated VOCs detection against hexane and chloroform. When exposed to hexane vapors, the NAP probe test kit showed sky blue emission under UV light, which returned to greenish emission upon exposure to chloroform. Therefore, the results show that this NAP probe can be used for gas leak detection applications.

5.
Expert Opin Drug Deliv ; : 1-18, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39205381

RESUMEN

INTRODUCTION: High incidence and fatality rates of cancer remain a global challenge. The success of conventional treatment modalities is being questioned on account of adverse effects. Photodynamic therapy (PDT) is a potential alternative. It utilizes a combination of photosensitizer (PS), light and oxygen to target the tissues locally, thereby minimizing the damage to neighboring healthy tissues. Conventional PSs suffer from poor selectivity, high hydrophobicity and sub-optimal yield of active radicals. Graphene nanomaterials (GNs) exhibit interesting particulate and photophysical properties in the context of their use in PDT. AREA COVERED: We focus on describing the mechanistic aspects of PDT-mediated elimination of cancer cells and the subsequent development of adaptive immunity. After covering up-to-date literature on the significant enhancement of PDT capability with GNs, we have discussed the probability of combining PDT with chemo-, immuno-, and photothermal therapy to make the treatment more effective. EXPERT OPINION: GNs can be synthesized in various size ranges, and their biocompatibility can be improved through surface functionalization and doping. These can be used as PS to generate ROS or conjugated with other PS molecules for treating deep-seated tumors. With increasing evidence on biosafety, such materials offer hope as antitumor therapeutics.

6.
Angew Chem Int Ed Engl ; : e202414517, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183175

RESUMEN

To study the effect of a dye on the photoluminescence (PL) properties of metal complexes, a series of gold(I) complexes were synthesized, containing a 7-amino-4-methylcoumarin luminophore. The complexes are comprised of a coumarin moiety featuring different ancillary ligands, specifically N-heterocyclic carbenes, triphenylphosphine, and diphenyl-2-pyridylphosphine. The synthesized gold(I) complexes are luminescent both in solution and the solid state at room temperature and 77 K. Complexes of different nuclearity, i.e., mono-, di- and trinuclear compounds were synthesized. A clear trend between the nuclearity and the quantum yields can be seen. The coumarin dye not only improves the PL properties, but also enhances the luminescence of trinuclear clusters, which are otherwise known to be weak emitters in solution. The optical absorption properties were investigated in detail by quantum chemical calculations.

7.
Biochem Biophys Res Commun ; 739: 150577, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181072

RESUMEN

The development of portable, cost-effective, and straightforward DNA biosensors holds immense importance in various fields, including healthcare, environmental monitoring, and food safety. This study contributes to the objective by introducing an innovative approach for synthesizing carbon dots (Cdots) with high quantum yield (QY) and remarkable selectivity for Fe3+ ions. Utilizing o-phenylenediamine as a precursor, the study achieved a straightforward and environmentally friendly synthesis method, enabling the efficient detachment of metal ions from the Cdot surface upon introducing pyrophosphate (PPi). The presence of surface hydroxyl and amino groups facilitated specific Fe3+ recognition. Employing D-optimal response surface methodology, the study optimized Cdot synthesis parameters, identifying temperature and heating time as critical factors influencing QY. Statistical analysis confirmed the model's reliability, predicting maximum QY of 48.8 % with minimal deviation from experimental results. Characterization studies revealed the amorphous nature of Cdots through HR-TEM, XRD, and FTIR analysis. Furthermore, the proposed LAMP/PPi biosensing technique demonstrated higher sensitivity, specificity, and repeatability, with negligible interference from common anions and efficacy across varying pH levels. The limit of detection (LOD) of 0.079 (±0.01) µM and the detection range of 0.1 µM-2 mM underscore the biosensor's practical utility. This study highlights a promising direction for developing paper-based LAMP/PPi biosensors with potential diagnostics and environmental monitoring applications. Significantly, the biosensing technique is applicable to any DNA amplification method generating pyrophosphate (PPi) as a by-product.

8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Angew Chem Int Ed Engl ; : e202411380, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140843

RESUMEN

Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages, most importantly it allows for the spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate based systems.

10.
Water Res ; 262: 122131, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067277

RESUMEN

Bisphenol S (BPS), a widely used plasticizer, is known to have potential endocrine disrupting effects to organisms. Its tetrahalogenated derivatives, tetrachlorobisphenol S (TCBPS) and tetrabromobisphenol S (TBBPS), are flame retardants exhibiting high neurodevelopmental toxicity and cytotoxicity. Halogen substitution has been shown to significantly affect the optical and photochemical properties of organic compounds. In this study, we conducted a comparative investigation into the photochemical behaviors of BPS, TCBPS, and TBBPS in aqueous solutions under both laboratory UV and natural sunlight irradiation. Spectroscopic titration results indicated that the pKa of TCBPS (4.16) and TBBPS (4.13) are approximately 3.7 units smaller than that of BPS (7.85), indicating that the halogenated derivatives are mainly present as the phenolate anions under circumneutral conditions. The halogen substituents also cause a significant bathochromic shift in the absorption spectra of TCBPS and TBBPS compared to BPS, leading to the enhanced absorption of sunlight. Meanwhile, TCBPS and TBBPS showed higher quantum yields than BPS, attributed to the "heavy atom" effect of halogen substituents. GCSOLAR modeling predicted half-lives for BPS, TCBPS, and TBBPS in surface water in Nanjing (32°2'7.3''N, 118°50'21''E) under noon sunlight in clear mid-autumn days as 810.2, 3.4, and 0.7 min, respectively. Toxicity evaluation suggest potential ecological risks of BPS/TCBPS/TBBPS and their photoproducts to aquatic organisms. Our findings highlight direct photolysis as an important mechanism accounting for the attenuation of tetrahalogenated bisphenols in both sunlit surface waters and UV based water treatment processes.engineered (e.g., UV disinfection) and natural aquatic environments (e.g., surface fresh waters).


Asunto(s)
Fenoles , Sulfonas , Contaminantes Químicos del Agua , Fenoles/química , Contaminantes Químicos del Agua/química , Sulfonas/química , Fotólisis , Agua/química , Luz Solar , Rayos Ultravioleta
11.
ACS Appl Mater Interfaces ; 16(28): 36851-36861, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953487

RESUMEN

Since the discovery of aggregation-induced emission from tetraphenylethylene derivatives, various methods have been explored to prepare highly efficient multicolored luminescent materials. Herein, we report a simple and efficient strategy for constructing luminescent organic salts of the tetracationic luminogen, tetrapyridinium-tetraphenylethylene (T4Py-TPE4+), combined with seven di- and tetra-anionic aromatic sulfonate ligands. When aqueous solutions of the cationic luminogen and the anionic ligands were mixed, they rapidly aggregated into organic salts within seconds to minutes, giving yields of up to >90%. This was accompanied by an increase in the emission efficiency from ∼58% to almost 100%, and the ability to tune the emission color between 511 and 586 nm. These improvements were mainly attributed to the strong electrostatic attractions between the cation and anions, which resulted in the formation of a rigid hydrophobic network of the T4Py-TPE4+ luminogen with various π-conjugation lengths. Because these compounds are commercially available, this method opens the possibility of fabricating novel light-emitting materials for device fabrication and research.

12.
ACS Appl Mater Interfaces ; 16(28): 36935-36941, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957006

RESUMEN

Heavy-atom-free triplet-triplet annihilation (TTA) upconversion sensitized by a thermally activated delayed fluorescence (TADF) molecule is investigated in a dried gel made of a photo-cross-linked polymer as the solid-state matrix. The upconversion fluorescence quantum yields, ΦUC, of the solid-gel TTA system at different penetration depths are measured accurately based on a developed internal-reference method. It is found that ΦUC is greatest at the surface and then decreases exponentially with increasing depth, influenced by the substrate absorption. The same process is also performed in a TTA solution at different depths, but a completely different result is obtained; there is little difference for ΦUC. To the best of our knowledge, this is the first time the quantum yields at different transmission depths have been mentioned and calculated experimentally. These results illustrate the importance of accurately measuring the quantum yield of solid-phase TTA upconversion and provide a novel way to improve the solid-phase TTA quantum yield by reducing the thickness of the substrate.

13.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955078

RESUMEN

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Asunto(s)
Clorofila , Cloropirifos , Clorofila/metabolismo , Clorofila/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Fluorescencia , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Fotosíntesis/efectos de los fármacos , Dimetoato/toxicidad , Dimetoato/metabolismo , Espectrometría de Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Monitoreo del Ambiente/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
14.
Curr Org Synth ; 21(8): 1091-1101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044697

RESUMEN

AIM AND OBJECTIVES: There are different approaches to the synthesis of benzimidazole. In this article, five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBMPO, F-BMPO and Cl-BMPO where (BMPO=3-[(1H)-benzo[d]imidazol-2-yl]pyridin-2(1H)-one), have been prepared. Another study was carried out on luminescence properties and their potential applications for the detection of transition metal ions. MATERIALS AND METHODS: From the one-pot synthesis approach, all the derivatives of the benzimidazole compounds were obtained. The compounds were characterized using HRMS, 1HNMR, 13CNMR, and X-ray crystallography. Herein, a mechanism has been deciphered by predicting the release of HCl(g). RESULTS: All compounds showed a strong deep blue emission when dissolved in dimethylacetamide (DMA), with emission wavelengths at 423, 428, 435, 423, and 421 nm, and half-times of 3.64, 2.77, 2, 19, 3.42 and 3.52 ns, respectively. In addition, their emission quantum yields were determined to be 72, 50, 42, 73 and 80%. CONCLUSION: Five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBIPO, F-BIPO, and Cl-BIPO, have been successfully synthesized by the one-pot synthesis method, and their structures are characterized and confirmed. The compounds exhibited exceptional luminescence by emitting a strong blue light in DMA with high fluorescence quantum yields between 42~80%.

15.
ACS Nano ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046341

RESUMEN

We introduce a two-step silica-encapsulation procedure to optimize both the optical efficiency and structural robustness of 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine (TDBC), a two-dimensional sheet-like J-aggregate. We report a fluorescence quantum yield of ∼98%, the highest quantum yield recorded for any J-aggregate structure at room temperature, and a fast, emissive lifetime of 234 ps. Silica, as an encapsulating matrix, provides optical transparency, chemical inertness, and robustness to dilution, while rigidifying the J-aggregate structure. Our in situ encapsulation process preserves the excitonic structure in TDBC J-aggregates, maintaining their light absorption and emission properties. The homogeneous silica coating has an average thickness of 0.5-1 nm around J-aggregate sheets. Silica encapsulation permits extensive dilutions of J-aggregates without significant disintegration into monomers. The narrow absorbance and emission line widths exhibit further narrowing upon cooling to 79 K, which is consistent with J-type coupling in the encapsulated aggregates. This silica TDBC J-aggregate construct signifies (1) a bright, fast, and robust fluorophore system, (2) a platform for further manipulation of J-aggregates as building blocks for integration with other optical materials and structures, and (3) a system for fundamental studies of exciton delocalization, transport, and emission dynamics within a rigid matrix.

16.
Chemistry ; 30(42): e202401417, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38970532

RESUMEN

An asymmetric mixed valence fluorophore with two different electron rich termini was investigated as a dual-role active material for electrochromism and electrofluorochromism. The fluorescence quantum yield (Φfl) and emission wavelength of the fluorophore were dependent on solvent polarity. The quantum yield of the material in an electrolyte gel, on a glass substrate and in a device was 40 %, 20 % and 13 % respectively. The fluorophore further underwent two near-simultaneous electrochemical oxidations. The first oxidation resulted in a 1000 nm red shift in the absorption to broadly absorb in the NIR, corresponding to the intervalence charge transfer (IVCT). Whereas the second oxidation led to a perceived green color at 715 nm with the extinction of the NIR absorbing IVCT. Owing to the dissymmetry of the fluorophore along with its two unique oxidation sites, the IVCT gives rise to a mixed valence transfer charge (MVCT). The coloration efficiency of the fluorophore in both solution and a device was 1433 and 200 cm2 C-1, respectively. The fluorescence intensity could be reversibly modulated electrochemically. The photoemission intensity of the fluorophore was modulated with applied potential in an operating electrochromic/electrofluorochromic device. Both the dual electrochromic and the electrofluorochromic behavior of the fluorophore were demonstrated.

17.
Chemistry ; : e202402476, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997235

RESUMEN

Many organic dyes are fluorescent in solution. In the solid state, however, quenching processes often dominate, hampering material science applications such as light filters, light-emitting devices, or coding tags. We show that the dimethylene-cyclopropanide scaffold can be used to form two structurally different types of chromophores, which feature fluorescence quantum yields up to 0.65 in dimethyl sulfoxide and 0.53 in solids. The increased fluorescence in the solid state for compounds bearing malonate substituents instead of dicyanomethid ones is rationalized by the induced twist between the planes of the cyclopropanide core and a pyridine ligand.

18.
Environ Sci Technol ; 58(28): 12477-12487, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38943037

RESUMEN

Although the impacts of exotic wetland plant invasions on native biodiversity, landscape features, and carbon-nitrogen cycles are well appreciated, biogeochemical consequences posed by ecological competition, such as the heterogeneity of dissolved organic matter (DOM) from plant detritus and its impact on the formation of reactive oxygen species, are poorly understood. Thus, this study delves into O2•- photogeneration potential of DOM derived from three different parts (stem, leaf, and panicle) of invasive Spartina alterniflora (SA) and native Phragmites australis (PA). It is found that DOM from the leaves of SA and the panicles of PA has a superior ability to produce O2•-. With more stable aromatic structures and a higher proportion of sulfur-containing organic compounds, SA-derived DOM generally yields more O2•- than that derived from PA. UVA exposure enhances the leaching of diverse DOM molecules from plant detritus. Based on the reported monitoring data and our findings, the invasion of SA is estimated to approximately double the concentration of O2•- in the surrounding water bodies. This study can help to predict the underlying biogeochemical impacts from the perspective of aquatic photochemistry in future scenarios of plant invasion, seawater intrusion, wetland degradation, and elevated solar UV radiation.


Asunto(s)
Humedales , Superóxidos/metabolismo , Especies Introducidas , Plantas/metabolismo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124529, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824758

RESUMEN

Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.


Asunto(s)
Antibacterianos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Oxígeno Singlete , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Porfirinas/química , Porfirinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Pruebas de Sensibilidad Microbiana , Luz , Bacterias/efectos de los fármacos , Diseño de Fármacos
20.
Ann Bot ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946023

RESUMEN

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA