Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
1.
Talanta ; 282: 126978, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366243

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas proteins coupled with pre-amplification have shown great potential in molecular diagnoses. However, the current CRISPR-based methods require additional reporters and time-consuming process. Herein, a gold nanoparticle (AuNP)-enhanced CRISPR/dCas9-mediated fluorescence resonance energy transfer (FRET) termed Au-CFRET platform was proposed for rapid, sensitive, and specific detection of nucleic acid for the first time. In the Au-CFRET sensing platform, AuNP was functionalized with dCas9 and used as nanoprobe. Target DNA was amplified with FAM-labeled primers and then precisely bound with AuNP-dCas9. The formed complex rendered the distance between AuNP acceptor and FAM donor to be short enough for the occurrence of FRET, thus resulting in fluorescence quenching. Moreover, AuNPs were demonstrated to enhance binding efficiency of dCas9 to target DNA in Au-CFRET system. The key factors regarding the FRET efficiency were analyzed and characterized in detail, including the length of donor/acceptor and the size of AuNPs. Under the optimal conditions, Au-CFRET could determinate CaMV35S promoter of genetically modified rice as low as 21 copies µL-1. Moreover, Au-CFRET sensing system coupled with one-step extraction and recombinase polymerase amplification can identify the genuine plant seeds within 30 min from sampling to results at room/body temperature without expensive equipment or technical expertise, and requires no additional exogenous reporters. Therefore, the proposed sensing platform significantly simplified the system and shortened the assay time for nucleic acid diagnoses.

2.
Food Chem ; 463(Pt 4): 141443, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39353307

RESUMEN

Oil oxidation, the main quality-deteriorated reaction, would significantly and negatively influence its quality and safety during processing and storage. Evaluating oil oxidation degree is an effective strategy to enable early warning and ensure food safety. Herein, principles, recent progresses, advantages and shortcomings, representative applications, current challenges and promising perspectives, and summary tables of traditional (titration), instrumental (chromatography and spectroscopy), and especially rapid detection methods (chemical colorimetric methods and portable miniaturized devices) for evaluating oil oxidation degree are presented and reviewed. It is believed that rapid detection methods are the most promising practical candidate for detecting oil oxidation. Also, the interaction between advanced data-processing techniques and detection methods, and the systematic integration of whole analytical processes is proposed as next-generation perspectives in the oil oxidation evaluation. We wish to provide the knowledge of oil oxidation degree determination and enlighten novel strategies.

3.
Talanta ; 282: 126941, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39357401

RESUMEN

With the emergence of numerous food safety problems, rapid and accurate detection of histamine in food spoilage remains a challenge. To this end, we developed a simple design and easy synthesis of fluorescein-based probe FCHO to achieve specific and rapid (<1 s) quantitative detection of histamine through "imine formation" reaction. Significant enhanced fluorescence signal in response to histamine enabled our probe with high sensitivity as low as 51 nM. Utilizing the visualized fluorescence color changes of the probe as histamine increasing, we combined it with paper-based test chip to construct a color-resolved and highly selective recognition system. In addition, our proposed probe has been successfully used to visually imaging histamine changes in fish samples. Finally, for the first time, we have proved it possesses reliable ability to directly in situ imaging the distribution of histamine in whole spoiled fish. Thus, our strategy will provide great potential for monitoring food spoilage.

4.
Sci Rep ; 14(1): 21946, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304692

RESUMEN

The plant virus, Impatiens necrotic spot virus (INSV), is an economically important pathogen of vegetables, fruits, and ornamental crops. INSV is vectored by the western flower thrips, Frankliniella occidentalis, a small insect pest that is globally distributed. In recent years, INSV outbreaks have reached epidemic levels in the Salinas Valley of California-an agriculturally rich region where most of the lettuce (Lactuca sativa) is produced in the United States. Due to the obligate nature in which virus transmission occurs, new tools that could rapidly detect INSV from thrips vectors would enhance our ability to predict where virus outbreaks may occur. Here, we report on the development of a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect INSV from individual thrips. The assay uses crude extraction methods, is performed at a single temperature of 42 °C, can be completed in 25 min, and provides sensitivity levels that are comparable to other available detection methods. When the assay was used on field populations of thrips, INSV was successfully identified and quantified from individual larvae and adults. The work provides a new cost-effective surveillance tool that can rapidly detect INSV from its insect vector and from plants.


Asunto(s)
Enfermedades de las Plantas , Thysanoptera , Animales , Thysanoptera/virología , Thysanoptera/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/parasitología , Insectos Vectores/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Recombinasas/genética , Tospovirus/genética , Tospovirus/aislamiento & purificación , Transcripción Reversa
5.
Front Cell Infect Microbiol ; 14: 1428827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318475

RESUMEN

The indiscriminate use of antibiotics has resulted in a growing resistance to drugs in Pseudomonas aeruginosa. The identification of antibiotic resistance genes holds considerable clinical significance for prompt diagnosis. In this study, we established and optimized a Recombinase-Aided Amplification (RAA) assay to detect two genes associated with drug resistance, oprD and arr, in 101 clinically collected P. aeruginosa isolates. Through screening for the detection or absence of oprD and arr, the results showed that there were 52 Imipenem-resistant P. aeruginosa (IRPA) strains and 23 Rifampin-resistant P. aeruginosa (RRPA) strains. This method demonstrated excellent detection performance even when the sample concentration is 10 copies/µL at isothermal conditions and the results could be obtained within 20 minutes. The detection results were in accordance with the results of conventional PCR and Real-time PCR. The detection outcomes of the arr gene were consistently with the resistance spectrum. However, the antimicrobial susceptibility results revealed that 65 strains were resistant to imipenem, while 49 strains sensitive to imipenem with oprD were identified. This discrepancy could be attributed to genetic mutations. In summary, the RAA has higher sensitivity, shorter time, and lower-cost instrument requirements than traditional detection methods. In addition, to analyze the epidemiological characteristics of the aforementioned drug-resistant strains, we conducted Multilocus Sequence Typing (MLST), virulence gene, and antimicrobial susceptibility testing. MLST analysis showed a strong correlation between the sequence types ST-1639, ST-639, ST-184 and IRPA, while ST-261 was the main subtype of RRPA. It was observed that these drug-resistant strains all possess five or more virulence genes, among which exoS and exoU do not coexist, and they are all multidrug-resistant strains. The non-coexistence of exoU and exoS in P.aeruginosa is related to various factors including bacterial regulatory mechanisms and pathogenic mechanisms. This indicates that the relationship between the presence of virulence genes and the severity of patient infection is worthy of attention. In conclusion, we have developed a rapid and efficient RAA (Recombinase-Aided Amplification) detection method that offers significant advantages in terms of speed, simplicity, and cost-effectiveness (especially in time and equipment aspect). This novel approach is designed to meet the demands of clinical diagnostics.


Asunto(s)
Antibacterianos , Imipenem , Pruebas de Sensibilidad Microbiana , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Recombinasas , Rifampin , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Imipenem/farmacología , Rifampin/farmacología , Humanos , Antibacterianos/farmacología , Recombinasas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Bacteriana/genética , Porinas/genética , Sensibilidad y Especificidad , Proteínas Bacterianas/genética , Técnicas de Diagnóstico Molecular/métodos
6.
Vet Sci ; 11(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39330790

RESUMEN

The H9 subtype of avian influenza virus (AIV) has been characterized by its rapid spread, wide range of prevalence, and continuous evolution in recent years, leading to an increasing ability for cross-species transmission. This not only severely impacts the economic benefits of the aquaculture industry, but also poses a significant threat to human health. Therefore, developing a rapid and sensitive detection method is crucial for the timely diagnosis and prevention of H9 AIVs. In this study, a real-time fluorescent reverse transcription recombinase-aided isothermal amplification (RT-RAA) technique targeting the hemagglutinin (HA) of H9 AIVs was established. This technique can be used for detection in just 30 min at a constant temperature of 42 °C, and it exhibits good specificity without cross-reactivity with other viruses. Sensitivity tests revealed that the detection limit of RT-RAA was 163 copies per reaction, and the visual detection limit was 1759 copies per reaction at a 95% confidence interval, both of which are capable of detecting low concentrations of standards. Furthermore, RT-RAA was applied to detect 155 clinical samples, and compared to real-time fluorescent quantitative PCR (RT-qPCR), RT-RAA demonstrated high accuracy, with a specificity of 100% and a kappa value of 0.96, indicating good correlation. Additionally, with the assistance of a portable blue imaging device, we can visually observe the amplification products, greatly facilitating rapid detection in resource-limited environments. The RT-RAA detection method developed in this study does not require expensive equipment or highly skilled staff, making it beneficial for the accurate and low-cost detection of H9 AIVs.

7.
Toxins (Basel) ; 16(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39330843

RESUMEN

Aflatoxins are carcinogenic mycotoxins that may contaminate many crops and more especially maize. To protect consumers from these contaminants, many countries set up low regulatory thresholds of few µg/kg. The control of food requires time-consuming analysis for which sampling is a key step. It would therefore of key sanitary and economic relevance to develop rapid, sensitive and accurate methods that could even be applied on line at harvest, to identify batches to be excluded as soon as possible. In this study, we analyzed more than 500 maize samples taken at harvest during 3 years for their aflatoxin contamination using HPLC-MS. Among them, only 7% were contaminated but sometimes at levels largely exceeding European regulations. We demonstrate that Near InfraRed Spectroscopy (NIRS) could be of great help to classify cereal samples according to their level of aflatoxin contamination (below or higher than E.U. regulation). To build the model, all AF contaminated samples as well as an equivalent number of AF free samples were used. NIRS performance was not sufficient to quantify the toxins with adequate precision. However, its ability to discriminate naturally contaminated maize samples according to their level of contamination with aflatoxins in relation to European regulations using a quadratic PCA-DA model was excellent. Accuracy of the model was 97.4% for aflatoxin B1 and 100% for total aflatoxins.


Asunto(s)
Aflatoxinas , Contaminación de Alimentos , Espectroscopía Infrarroja Corta , Zea mays , Zea mays/química , Zea mays/microbiología , Aflatoxinas/análisis , Contaminación de Alimentos/análisis , Cromatografía Líquida de Alta Presión
8.
Front Vet Sci ; 11: 1424238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220765

RESUMEN

Avian leukemia virus (ALV) is one of the main pathogens of poultry tumor diseases, and has caused significant economic losses to the poultry industry since its discovery. Therefore, establishing a rapid detection method is essential to effectively prevent and control the spread of ALV. In this study, specific CRISPR RNA (crRNA) and recombinase-aided amplification (RAA) primers with T7 promoter were designed based on the relatively conserved sequence of avian leukemia virus. When crRNA recognized the target sequence, Cas13a protein was activated to cut the reporting probes, and then the detection results were read by using lateral flow dipstick (LFD). The RAA-CRISPR/Cas13a-LFD reaction system was constructed. The RAA amplification time, Cas13a protein concentration, crRNA concentration and CRISPR reaction time were optimized to evaluate the specificity, sensitivity and reproducibility of the system. Finally, RAA-CRISPR/Cas13a-LFD method was compared with Polymerase chain reaction (PCR)-Agarose electrophoresis method and qPCR method in the detection of clinical samples, and the reliability of RAA-CRISPR/Cas13a-LFD method was evaluated. The results showed that the RAA-CRISPR/Cas13a-LFD method could effectively amplify the target gene at 37°C for 40 min, and the test results could be determined by LFD visual observation. The method had good specificity and no cross-reaction with Marek's disease virus (MDV), Fowl adenovirus (FAdV), Infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), Infectious laryngotracheitis virus (ILTV), and Infectious bronchitis virus (IBV). The minimum detection limit of the method was 100 copies/µL, and it had good repeatability and stability. The coincidence rate of clinical detection reached 97.69% and 99.23%. In summary, this study established a simple, efficient, accurate and visualized ALV detection method, which can be used for the prevention and rapid clinical diagnosis of avian leukosis (AL).

9.
Future Microbiol ; : 1-7, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258425

RESUMEN

Aim: Mycoplasma pneumoniae (MP) is a common cause of respiratory infections, and its incidence has increased post-COVID-19 due to "immune debt." Real-time quantitative polymerase chain reaction (qPCR) is the standard for detecting MP, but it has a lengthy detection time. This study aimed to establish a highly sensitive rapid detection method for MP.Materials & methods: We developed an integrated assay combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA-qPCR, for the rapid detection of MP, delivering results within approximately 40 min.Results: The analytic sensitivity of the MIRA-qPCR assay was 10 copies per reaction, and it exhibited no cross-reactivity with other respiratory pathogens, ensuring high specificity. Clinical sample analysis demonstrated higher sensitivity for MIRA-qPCR compared to qPCR reported in the literature, and 100% concordance with commercial qPCR kit.Conclusion: The MIRA-qPCR method established in this study is a promising tool for the clinical detection of MP, offering significant advantages for the rapid diagnosis of MP infections.


Mycoplasma pneumoniae is a bacteria that can make us sick. It mainly affects the lungs and can cause a sickness called "walking pneumonia". This is because it can make you poorly, but not so badly that you are unable to walk around. This bacteria spreads when someone that is infected sneezes or coughs. It is important that M. pneumoniae can be diagnosed quickly. This article looks at a new, fast way to identify infection called MIRA-quantitative PCR.

10.
APMIS ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301971

RESUMEN

The rise in osteomyelitis and periprosthetic joint infections, in combination with increasing life expectancy and the prevalence of diabetes, underscores the urgent need for rapid and accurate diagnostic tools. Conventional culture-based methods are often time-consuming and prone to false-negatives, leading to prolonged and inappropriate antibiotic treatments. This study aims to improve osteomyelitis diagnostics by decreasing the time to detection and the time to an antibiotic susceptibility result to enable a targeted treatment using isothermal microcalorimetry (IMC). IMC measures heat flow in real-time, providing insights into bacterial metabolism without the need for labeling. Using clinical isolates from bone infections, assessing their response to antibiotics through IMC, we demonstrated that IMC could detect bacteria within 4 h and determine antimicrobial susceptibility profiles within 2-22 h (median 4.85, range 1.28-21.78). This is significantly faster than traditional methods. A decision tree, based on antibiotic susceptibility, accurately categorized pathogens, achieving high accuracy (74-100%), sensitivity (100%), and specificity (65-100%). These findings suggest that IMC could redefine diagnostics of bone and joint infections and potentially infections in general, offering timely and precise treatment guidance, thereby improving patient outcomes and reducing health care burdens. Further optimization and clinical validation are needed to fully integrate IMC into routine diagnostics.

11.
Food Microbiol ; 124: 104622, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244373

RESUMEN

Escherichia coli O157:H7 is a pathogenic serotype of Escherichia coli. Consumption of food contaminated with E. coli O157:H7 could cause a range of diseases. Therefore, it is of great importance to establish rapid and accurate detection methods for E. coli O157:H7 in food. In this study, based on LAMP and combined with the CRISPR/cas12a system, a sensitive and specific rapid detection method for E. coli O157:H7 was established, and One-Pot detection method was also constructed. The sensitivity of this method could stably reach 9.2 × 10° CFU/mL in pure culture, and the whole reaction can be completed within 1 h. In milk, E. coli O157:H7 with an initial contamination of 7.4 × 10° CFU/mL only needed to be cultured for 3 h to be detected. The test results can be judged by the fluorescence curve or by visual observation under a UV lamp, eliminating instrument limitations and One-Pot detection can effectively prevent the problem of false positives. In a word, the LAMP-CRISPR/cas12a system is a highly sensitive and convenient method for detecting E. coli O157:H7.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli O157 , Microbiología de Alimentos , Leche , Técnicas de Amplificación de Ácido Nucleico , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Leche/microbiología , Microbiología de Alimentos/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Sensibilidad y Especificidad , Contaminación de Alimentos/análisis , Técnicas de Diagnóstico Molecular/métodos
12.
J Microbiol Methods ; 226: 107030, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245370

RESUMEN

Mycoplasma genitalium (MG) is an important sexually transmitted pathogen that can cause urethritis in males and pelvic inflammatory disease in females. Due to its complex growth requirements and lengthy incubation times, culturing MG in clinical laboratories is impractical. Here we describe a rapid and visual assay combining recombinase polymerase amplification (RPA) with lateral flow (LF) strips to detect MG (MG-RPA-LF). The limit of detection (LoD) of this method was 33.6 genome equivalents (GE) per reaction, using a dilution series of purified genomic DNA. Clinical performance was evaluated by testing 100 urogenital swabs. Compared to the Simultaneous Amplification and Testing assay, our MG-RPA-LF assay showed a sensitivity of 94 % (95 % CI, 82 %-98 %) and a specificity of 100 % (95 % CI, 91 %-100 %). The overall concordance between the two methods was 97 % (95 % CI, 91 %-99 %) with a κ coefficient of 0.94 (P < 0.001). Without cumbersome and expensive instruments, this method is anticipated to be a promising alternative to diagnose MG infection, especially in resource-poor settings.

13.
Pol J Microbiol ; 73(3): 383-394, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39268952

RESUMEN

The global proliferation of carbapenemase-producing bacteria (CPB) has garnered significant attention worldwide. Early diagnosis of CPB and accurate identification of carbapenemases are crucial for preventing the spread of CPB and ensuring targeted antibiotic therapy. Therefore, efficient and accurate identification of carbapenemases is paramount in clinically treating diseases associated with CPB. In this study, 58 CPB strains were collected and detected using the DNA endonuclease-targeted CRISPR trans reporter (DETECTR) method, a rapid detection platform based on CRISPR-Cas12a gene editing and isothermal amplification. Additionally, four conventional methods (the APB/EDTA method, PCR, NG-test Carba 5, and GeneXpert Carba-R) were employed and compared against whole genome sequencing (WGS) results, considered the gold standard, to evaluate their efficacy in detecting carbapenemases. Detection by the APB/EDTA method revealed that 29 strains were positive for Class A serine endopeptidases, while 29 strains were positive for Class B metalloenzymes. The classification of these zymotypes was consistent with the sequencing result. All target carbapenemases for KPC were identified with 100% sensitivity using NG-test Carba 5, PCR, DETECTR, and GeneXpert Carba-R. In the case of NDM, both Xpert Carba-R and DETECTR showed a sensitivity of 100%. In contrast, NG-test Carba 5 and PCR had a slightly lower sensitivity of 96.7%, each missing one target carbapenemase. n this study, the APB/EDTA method is capable of identifying the zymotype classification but not the specific resistant genes, while Xpert Carba-R and DETECTR are able to detect all target carbapenemases.


Asunto(s)
Proteínas Bacterianas , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa/métodos , Secuenciación Completa del Genoma , Sistemas CRISPR-Cas
14.
Front Oncol ; 14: 1460136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324006

RESUMEN

Introduction: Colorectal cancer (CRC) is one of the most common malignancies, with liver metastasis being its most common form of metastasis. The diagnosis of colorectal cancer liver metastasis (CRCLM) mainly relies on imaging techniques and puncture biopsy techniques, but there is no simple and quick early diagnosisof CRCLM. Methods: This study aims to develop a method for rapidly detecting the risk of liver metastasis in CRC patients through blood test indicators based on machine learning (ML) techniques, thereby improving treatment outcomes. To achieve this, blood test indicators from 246 CRC patients and 256 CRCLM patients were collected and analyzed, including routine blood tests, liver function tests, electrolyte tests, renal function tests, glucose determination, cardiac enzyme profiles, blood lipids, and tumor markers. Six commonly used ML models were used for CRC and CRCLM classification and optimized by using a feature selection strategy. Results: The results showed that AdaBoost algorithm can achieve the highest accuracy of 89.3% among the six models, which improved to 91.1% after feature selection strategy, resulting with 20 key markers. Conclusions: The results demonstrate that the combination of machine learning techniques with blood markers is feasible and effective for the rapid diagnosis of CRCLM, significantly im-proving diagnostic ac-curacy and patient prognosis.

15.
Sensors (Basel) ; 24(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39338626

RESUMEN

In this study, we present an electronic nose (e-nose) humidity compensation system based on rapid detection to solve the issue of humidity drift's potential negative impact on the performance of electronic noses. First, we chose the first ten seconds of non-steady state (rapid detection mode) sensor data as the dataset, rather than waiting for the electronic nose to stabilize during the detection process. This was carried out in the hope of improving the detection efficiency of the e-nose and to demonstrate that the e-nose can collect gasses efficiently in rapid detection mode. The random forest approach is then used to optimize and reduce the dataset's dimensionality, filtering critical features and improving the electronic nose's classification capacity. Finally, this study builds an electronic nose humidity compensation system to compensate for the datasets generated via rapid real-time detection, efficiently correcting the deviation of the sensor response caused by humidity variations. This method enhanced the average resolution of the electronic nose in this trial from 87.7% to 99.3%, a 12.4% improvement, demonstrating the efficacy of the humidity compensation system based on rapid detection for the electronic nose. This strategy not only improves the electronic nose's anti-drift and classification capabilities but also extends its service life, presenting a new solution for the electronic nose in practical detecting applications.

16.
Animals (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272386

RESUMEN

The continued evolution of H3 subtype avian influenza virus (AIV)-which crosses the interspecific barrier to infect humans-and the potential risk of genetic recombination with other subtypes pose serious threats to the poultry industry and human health. Therefore, rapid and accurate detection of H3 virus is highly important for preventing its spread. In this study, a method based on real-time reverse transcription recombinase-aided isothermal amplification (RT-RAA) was successfully developed for the rapid detection of H3 AIV. Specific primers and probes were designed to target the hemagglutinin (HA) gene of H3 AIV, ensuring highly specific detection of H3 AIV without cross-reactivity with other important avian respiratory viruses. The results showed that the detection limit of the RT-RAA fluorescence reading method was 224 copies/response within the 95% confidence interval, while the detection limit of the RT-RAA visualization method was 1527 copies/response within the same confidence interval. In addition, 68 clinical samples were examined and the results were compared with those of real-time quantitative PCR (RT-qPCR). The results showed that the real-time fluorescence RT-RAA and RT-qPCR results were completely consistent, and the kappa value reached 1, indicating excellent correlation. For visual detection, the sensitivity was 91.43%, the specificity was 100%, and the kappa value was 0.91, which also indicated good correlation. In addition, the amplified products of RT-RAA can be visualized with a portable blue light instrument, which enables rapid detection of H3 AIV even in resource-constrained environments. The H3 AIV RT-RAA rapid detection method established in this study can meet the requirements of basic laboratories and provide a valuable reference for the early diagnosis of H3 AIV.

17.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272450

RESUMEN

Heavy metal ions such as cadmium, mercury, lead, and arsenic in the soil cannot be degraded naturally and are absorbed by crops, leading to accumulation in agricultural products, which poses a serious threat to human health. Therefore, establishing a rapid and efficient method for detecting heavy metal ions in agricultural products is of great significance to ensuring the health and safety. In this study, a novel optimized spectrometric method was developed for the rapid and specific colorimetric detection of cadmium ions based on N-(2-Acetamido)-iminodiacetic acid (ADA) and Victoria blue B (VBB) as the chromogenic unit. The safety evaluation of ADA showed extremely low biological toxicity in cultured cells and live animals. The standard curve is y = 0.0212x + 0.1723, R2 = 0.9978, and LOD = 0.08 µM (0.018 mg/kg). The liner concentrations detection range of cadmium is 0.1-10 µM. An inexpensive paper strip detection method was developed with a detection limit of 0.2 µM to the naked eye and a detection time of less than 1 min. The method was successfully used to assess the cadmium content of rice, soybean, milk, grape, peach, and cabbage, and the results correlated well with those determined by inductively coupled plasma-mass spectrometry (ICP-MS). Thus, our study demonstrated a novel rapid, safe, and economical method for onsite, real-time detection of cadmium ions in agricultural products.

18.
Small ; : e2403560, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212623

RESUMEN

Drug toxicity assays using conventional 2D static cultures and animal studies have limitations preventing the translation of potential drugs to the clinic. The recent development of organs-on-a-chip platforms provides promising alternatives for drug toxicity/screening assays. However, most studies conducted with these platforms only utilize single endpoint results, which do not provide real-time/ near real-time information. Here, a versatile technology is presented that integrates a 3D liver-on-a-chip with a label-free photonic crystal-total internal reflection (PC-TIR) biosensor for rapid and continuous monitoring of the status of cells. This technology can detect drug-induced liver toxicity by continuously monitoring the secretion rates and levels of albumin and glutathione S-transferase α (GST-α) of a 3D liver on-a-chip model treated with Doxorubicin. The PC-TIR biosensor is based on a one-step antibody functionalization with high specificity and a detection range of 21.7 ng mL-1 to 7.83 x 103 ng mL-1 for albumin and 2.20 ng mL-1 to 7.94 x 102 ng mL-1 for GST-α. This approach provides critical advantages for the early detection of drug toxicity and improved temporal resolution to capture transient drug effects. The proposed proof-of-concept study introduces a scalable and efficient plug-in solution for organ-on-a-chip technologies, advancing drug development and in vitro testing methods by enabling timely and accurate toxicity assessments.

19.
Microbiol Spectr ; 12(10): e0104424, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39162506

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) are increasingly reported worldwide and a leading cause of mortality associated with antimicrobial resistance. Their early detection, particularly in the cases of bloodstream infections, is crucial in attempting to initiate effective antibiotic treatment. The immunochromatographic assay RESIST ACINETO (Coris BioConcept) is a new test developed for the detection of OXA-23, OXA-40/58, and New-Delhi Metallo-beta-lactamase (NDM) carbapenemases in Acinetobacter spp. We evaluated this test on a collection of 121 Acinetobacter spp. clinical isolates, including 104 carbapenemase producers (97 carbapenemases targeted by the test) and 17 non-carbapenemase producers. The performance of the RESIST ACINETO test was evaluated according to the manufacturer's recommendations from bacterial and blood cultures. The strains producing the carbapenemases OXA-23, -40, -58, or/and NDM were accurately detected from bacterial cultures and directly from blood cultures, with the exception of one OXA-23/NDM-1-positive Acinetobacter radioresistens isolate (only detected through standard culture). None of the non-carbapenemase producers tested positive. The RESIST ACINETO test demonstrated sensitivity/specificity of 100%/100% and 99%/100% on bacterial and blood cultures, respectively. IMPORTANCE: The incidence of bloodstream infections with carbapenem-resistant Acinetobacter baumannii (CRAB) could be very high in some countries such as the Balkans or Southeast Asia. In case of positive blood cultures with Gram-negative bacteria, the use of the RESIST ACINETO test could prove highly beneficial for the rapid identification of these imipenem-resistant bacteria and their antibiotic resistance mechanisms. In addition, it is now well established that New-Delhi Metallo-beta-lactamase (NDM) carbapenemase-producing isolates can have increased MICs of cefiderocol, which is an alternative treatment for these infections. This test may also allow the optimization of treatment based on the type of carbapenemase present. Finally, the RESIST ACINETO test is a rapid, easy-to-use, and cost-effective assay that demonstrates excellent performance in detecting the major acquired carbapenemases present in the Acinetobacter species.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Antibacterianos , Proteínas Bacterianas , Cultivo de Sangre , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/diagnóstico , Cultivo de Sangre/métodos , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter/enzimología , Acinetobacter/aislamiento & purificación , Acinetobacter/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Sensibilidad y Especificidad
20.
Microbiol Spectr ; 12(10): e0127124, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39189759

RESUMEN

Salmonella enterica serovar Typhimurium (ST) is a predominant serovar causing foodborne illnesses worldwide. Traditional detection methods often face challenges, including the need for specialized equipment, skilled operators, and lengthy procedures. To address these limitations, we developed a rapid, sensitive, and specific ST detection method by integrating loop-mediated isothermal amplification (LAMP) with the clustered regularly interspaced short palindromic repeats and associated protein 12b (CRISPR/Cas12b) system, all within a single tube. Our results indicate that the LAMP-CRISPR/Cas12b reaction can be completed isothermally in under 1 h without requiring specialized instruments. The platform's limit of detection (LoD) is 12.5 copies per reaction. Additionally, the system demonstrated 100% inclusivity and exclusivity when tested against 30 reference strains, highlighting its specificity. In practical applications, the LoDs for ST in pure nucleic acid and contaminated fecal samples were 2.32 and 23.2 CFU/mL, respectively, with higher sensitivity observed in pure nucleic acid samples. Overall, our findings underscore the potential of the one-tube LAMP-CRISPR/Cas12b platform as a rapid, sensitive, and specific tool for ST detection, particularly in resource-limited settings. IMPORTANCE: Here, we have provided a novel one-step method for Salmonella Typhimurium detection in one pot by integrating the LAMP assay with the CRISPR/Cas12b system, offering significant advantages in terms of simplicity, speed, and accuracy.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Salmonella typhimurium , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Humanos , Sensibilidad y Especificidad , Límite de Detección , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/diagnóstico , Heces/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA