Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414417, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308269

RESUMEN

Hydrogen peroxide (H2O2) is a crucial chemical applied in various industry sectors. However, the current industrial anthraquinone process for H2O2 synthesis is carbon-intensive. With sunlight and renewable electricity as energy inputs, photocatalysis and electrocatalysis have great potential for green H2O2 production from oxygen (O2) and water (H2O). Herein, we review the advances in pairing two-electron O2 reduction and two-electron H2O oxidation reactions for dual-pathway H2O2 synthesis. The basic principles, paired redox reactions, and catalytic device configurations are introduced initially. Aligning with the energy input, the latest photocatalysts, electrocatalysts, and photo-electrocatalysts for dual-pathway H2O2 production are discussed afterward. Finally, we outlook the research opportunities in the future. This minireview aims to provide insights and guidelines for the broad community who are interested in catalyst design and innovative technology for on-site H2O2 synthesis.

2.
Small ; : e2406375, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235360

RESUMEN

Light-induced water splitting (hν-WS) for the production of hydrogen as a solar fuel is considered a promising sustainable strategy for the replacement of fossil fuels. An efficient system for hν-WS involves a photoactive material that, upon shining light, is capable of separating and transferring charges to catalysts for the hydrogen and oxygen evolution processes. Covalent triazine-based frameworks (CTFs) represent an interesting class of 2D organic light-absorbing materials that have recently emerged thanks to their tunable structural, optical and morphological properties. Typically, catalysts (Cat) are metallic nanoparticles generated in situ after photoelectroreduction of metal precursors or directly drop-casted on top of the CTF material to generate Cat-CTF assemblies. In this work, the synthesis, characterization and photocatalytic performance of a novel hybrid material, Ru-CTF, is reported, based on a CTF structure featuring dangling pyridyl groups that allow the Ru-tda (tda is [2,2':6',2'"-terpyridine]-6,6'"-dicarboxylic acid) water oxidation catalyst (WOC) unit to coordinate via covalent bond. The Ru-CTF molecular hybrid material can carry out the light-induced water oxidation reaction efficiently at neutral pH, reaching values of maximum TOF of 17 h-1 and TONs in the range of 220 using sodium persulfate as a sacrificial electron acceptor.

3.
Small ; : e2407601, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279573

RESUMEN

Hydrogen sulfide is a significant byproduct of oil and gas production and is typically recovered as elemental sulfur, a low-value commodity. In recent years, there have been efforts to upgrade H2S through elemental decomposition to S and H2, an essential energy carrier in a sustainable economy. Among the promising approaches is thermocatalytic looping, which involves a sulfide-based redox pair. Unfortunately, the search for sulfides capable of facilitating this conversion is progressing slowly, and primarily focusing on monometallic sulfides. With a few notable exceptions, the field of bimetallic sulfide remains largely unexplored. In this study, a machine learning framework is employed to explore the material space of mono and bimetallic sulfides. The workflow begins by mining sulfides from the Materials Project database, allowing the workflow to be benchmarked using formation enthalpies derived from established density functional theory calculations. Through the machine learning framework, the number of bimetallic sulfide redox pairs considered is expanded from 102 cases in the Materials Project database to 105 cases. This expansion allows for the identification trends that can serve as guidelines for future research and helps prioritize materials for experimental testing.

4.
Angew Chem Int Ed Engl ; : e202412682, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129346

RESUMEN

Herein, we disclose the first report on gold-catalyzed C(sp2)-CN cross-coupling reaction by employing a ligand-enabled Au(I)/Au(III) redox catalysis. This transformation utilizes acetone cyanohydrin as a nucleophilic cyanide source to convert simple aryl and alkenyl iodides into the corresponding nitriles. Combined experimental and computational studies highlighted the crucial role of cationic silver salts in activating the stable (P,N)-AuCN complex towards the oxidative addition of aryl iodides to subsequently generate key aryl-Au(III) cyanide complexes.

5.
Angew Chem Int Ed Engl ; 63(39): e202409854, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38950149

RESUMEN

An organophosphorus -catalyzed method for the direct electrophilic cyanation of C(sp2)-H nucleophiles with sodium cyanate (NaOCN) is reported. The catalytic deoxyfunctionalization of the OCN- anion is enabled by the use of a small-ring phosphacyclic (phosphetane) catalyst in combination with a terminal hydrosilane O-atom acceptor and a malonate-derived bromenium donor. In situ spectroscopy under single-turnover conditions demonstrate that insoluble inorganic cyanate anion is activated by bromide displacement on a bromophosphonium catalytic intermediate to give a reactive N-bound isocyanatophosphonium ion, which delivers electrophilic "CN+" equivalents to nucleophilic (hetero)arenes and alkenes with loss of a phosphine oxide. These results demonstrate the feasibility of deoxyfunctionalization of insoluble inorganic salts by PIII/PV=O catalyzed phase transfer activation.

6.
Beilstein J Org Chem ; 20: 1292-1297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887568

RESUMEN

Redox active phenotellurazine catalysts have been recently utilized in two different cross-dehydrogenative coupling reactions. In this study, we revisit the design of the phenotellurazine redox catalysts. In particular, we investigate the level of cooperativity between the Te- and N-centers, the effect of secondary versus tertiary N-centers, the effect of heterocyclic versus non-heterocyclic structures, and the effect of substitution patterns on the redox catalytic activity.

7.
Adv Mater ; 36(30): e2405832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759109

RESUMEN

A broad range of chemical transformations driven by catalytic processes necessitates the electron transfer between catalyst and substrate. The redox cycle limitation arising from the inequivalent electron donation and acceptance of the involved catalysts, however, generally leads to their deactivation, causing substantial economic losses and environmental risks. Here, a "non-redox catalysis" strategy is provided, wherein the catalytic units are constructed by atomic Fe and B as dual active sites to create tensile force and electric field, which allows directional self-decomposition of peroxymonosulfate (PMS) molecules through internal electron transfer to form singlet oxygen, bypassing the need of electron transfer between catalyst and PMS. The proposed catalytic approach with non-redox cycling of catalyst contributes to excellent stability of the active centers while the generated reactive oxygen species find high efficiency in long-term catalytic pollutant degradation and selective organic oxidation synthesis in aqueous phase. This work offers a new avenue for directional substrate conversion, which holds promise to advance the design of alternative catalytic pathways for sustainable energy conversion and valuable chemical production.

8.
Angew Chem Int Ed Engl ; 63(33): e202406936, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38769939

RESUMEN

Cope rearrangements have garnered significant attention owing to their ability to undergo structural reorganization in stereoselective manner. While substantial advances have been achieved over decades, these rearrangements remained applicable exclusively to parent 1,5-hexadienes. Herein, we disclose the gold-catalyzed arylative Cope rearrangement of 1,6-heptadienes via a cyclization-induced [3,3]-rearrangement employing ligand-enabled gold redox catalysis. Detailed mechanistic investigations including several control experiments, cross-over experiment, HRMS analysis, 31P NMR and DFT studies have been performed to underpin the mechanism.

9.
Adv Mater ; 36(7): e2308392, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814460

RESUMEN

A multistep synthesis of a new tetra-amidate macrocyclic ligand functionalized with alkyl-thiophene moieties, 15,15-bis(6-(thiophen-3-yl)hexyl)-8,13-dihydro-5H-dibenzo[b,h][1,4,7,10]tetraazacyclotridecine-6,7,14,16(15H,17H)-tetraone, H4 L, is reported. The reaction of the deprotonated ligand, L4- , and Cu(II) generates the complex [LCu]2- , that can be further oxidized to Cu(III) with iodine to generate [LCu]- . The H4 L ligand and their Cu complexes have been thoroughly characterized by analytic and spectroscopic techniques (including X-ray Absorption Spectroscopy, XAS). Under oxidative conditions, the thiophene group of [LCu]2- complex polymerizes on the surface of graphitic electrodes (glassy carbon disks (GC), glassy carbon plates (GCp ), carbon nanotubes (CNT), or graphite felts (GF)) generating highly stable thin films. With CNTs deposited on a GC by drop casting, hybrid molecular materials labeled as GC/CNT@p-[LCu]2- are obtained. The latter are characterized by electrochemical techniques that show their capacity to electrocatalytically oxidize water to dioxygen at neutral pH. These new molecular anodes achieve current densities in the range of 0.4 mA cm-2 at 1.30 V versus NHE with an onset overpotential at ≈250 mV. Bulk electrolysis experiments show an excellent stability achieving TONs in the range of 7600 during 24 h with no apparent loss of catalytic activity and maintaining the molecular catalyst integrity, as evidenced by electrochemical techniques and XAS spectroscopy.

10.
Chemistry ; 30(2): e202302990, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37967304

RESUMEN

Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.

11.
Angew Chem Int Ed Engl ; 63(8): e202315046, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-37988225

RESUMEN

Whereas indications of radical reactivity in bismuth compounds can be traced back to the 19th century, the preparation and characterization of both transient and persistent bismuth-radical species has only been established in recent decades. These advancements led to the emergence of the field of bismuth radical chemistry, mirroring the progress seen for other main-group elements. The seminal and fundamental studies in this area have ultimately paved the way for the development of catalytic methodologies involving bismuth-radical intermediates, a promising approach that remains largely untapped in the broad landscape of synthetic organic chemistry. In this review, we delve into the milestones that eventually led to the present state-of-the-art in the field of radical bismuth chemistry. Our focus aims at outlining the intrinsic discoveries in fundamental inorganic/organometallic chemistry and contextualizing their practical applications in organic synthesis and catalysis.

12.
Small ; 20(12): e2307021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940629

RESUMEN

Electrochemically reversible conversion of I2/I- redox couple in a controllable iodine speciation manner is the eternal target for practical metal-iodine batteries. This contribution demonstrates an advanced polyiodide-free Zn-I2 battery achieved by the bidirectional confined redox catalysis-directed quasi-solid iodine conversion. A core-shell structured iodine cathode is fabricated by integrating multiporous Prussian blue nanocubes as a catalytic mediator, and the polypyrrole sheath afforded a confinement environment that favored the iodine redox. The zincate Znx+1FeIII/II[Fe(CN)6]y has substantially faster zinc-ion intercalation kinetics and overlapping kinetic voltage profiles compared with the I2/ZnI2 redox, and behave as a redox mediator that catalyze reduction of polyiodides via chemical redox reactions during battery discharging and an exemplary reaction is Zn(I3)2+2Znx+1FeII[Fe(CN)6]y=3ZnI2+2ZnxFeIII[Fe(CN)6]y,ΔG=-19.3 kJ mol-1). During the following recharging process, the electrodeposited ZnI2 can be facially activated by iron redox hotspots, and the ZnxFe[FeIII/II(CN)6]y served as a cation-transfer mediator and spontaneously catalyze polyiodides oxidation (Zn(I3)2+2ZnxFe[FeIII(CN)6]y=3I2+2Znx+1Fe[FeII(CN)6]y,ΔG = -7.72 kJ mol-1), manipulating the reversible one-step conversion of ZnI2 back to I2. Accordingly, a flexible solid-state battery employing the designed cathode can deliver an energy density of 215 Wh kgiodine -1.

13.
Photosynth Res ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108928

RESUMEN

Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.

14.
ACS Appl Mater Interfaces ; 15(46): 53498-53514, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37945527

RESUMEN

The development of new methods of catalyst synthesis with the potential to generate active site structures orthogonal to those accessible by traditional protocols is of great importance for discovering new materials for addressing challenges in the evolving energy and chemical economy. In this work, the generality of oxidative grafting of organometallic and well-defined molecular metal precursors onto redox-active surfaces such as manganese dioxide (MnO2) and lithium manganese oxide (LiMn2O4) is investigated. Nine molecular metal precursors are explored, spanning groups 4-11 and each of the three periods of the transition metal series. The byproducts of the oxidative grafting reaction, a mixture of protodemetalation and ligand homocoupling for several organometallic precursors, was found to provide insights into the mechanism of the grafting reaction, suggesting oxidation of both the metal d-orbitals, as well as the metal-carbon σ-bonds, resulting in ejection of the ligand radical fragment. Analysis of the supported structures and oxidation state by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) suggests that several of the chemisorbed metal ions are intercalated into interstitial vacancies of the surface structure while other complexes form intact molecular fragments on the surface. Proof of concept for the use of this metalation protocol to generate diverse, metal-dependent catalytic performance is demonstrated by the application of these materials in the conversion of cyclohexane to K/A oil (cyclohexanol and cyclohexanone) with tert-butyl hydroperoxide, as well as in the low-temperature (T ≤ 50 °C) oxidation of carbon monoxide to carbon dioxide.

15.
Front Chem ; 11: 1220543, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593106

RESUMEN

The Dictyostelium discoideum dye-decolorizing peroxidase (DdDyP) is a newly discovered peroxidase, which belongs to a unique class of heme peroxidase family that lacks homology to the known members of plant peroxidase superfamily. DdDyP catalyzes the H2O2-dependent oxidation of a wide-spectrum of substrates ranging from polycyclic dyes to lignin biomass, holding promise for potential industrial and biotechnological applications. To study the molecular mechanism of DdDyP, highly pure and functional protein with a natively incorporated heme is required, however, obtaining a functional DyP-type peroxidase with a natively bound heme is challenging and often requires addition of expensive biosynthesis precursors. Alternatively, a heme in vitro reconstitution approach followed by a chromatographic purification step to remove the excess heme is often used. Here, we show that expressing the DdDyP peroxidase in ×2 YT enriched medium at low temperature (20°C), without adding heme supplement or biosynthetic precursors, allows for a correct native incorporation of heme into the apo-protein, giving rise to a stable protein with a strong Soret peak at 402 nm. Further, we crystallized and determined the native structure of DdDyP at a resolution of 1.95 Å, which verifies the correct heme binding and its geometry. The structural analysis also reveals a binding of two water molecules at the distal site of heme plane bridging the catalytic residues (Arg239 and Asp149) of the GXXDG motif to the heme-Fe(III) via hydrogen bonds. Our results provide new insights into the geometry of native DdDyP active site and its implication on DyP catalysis.

16.
Angew Chem Int Ed Engl ; 62(42): e202310493, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37649285

RESUMEN

Herein, we report the first gold-catalyzed 1,2-dicarbofunctionalization of alkynes using organohalides as non-prefunctionalized coupling partners. The mechanism of the reaction involves an oxidative addition/π-activation mechanism in contrast to the migratory insertion/cis-trans isomerization pathway that is predominantly observed with other transition metals yielding products with anti-selectivity. Mechanistic insights include several control experiments, NMR studies, HR-MSMS analyses, and DFT calculations that strongly support the proposed mechanism.

17.
Angew Chem Int Ed Engl ; 62(37): e202308636, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37491811

RESUMEN

Herein, we disclose the first report of 1,2-difunctionalization of C-C multiple bonds using electrochemical gold redox catalysis. By adopting the electrochemical strategy, the inherent π-activation and cross-coupling reactivity of gold catalysis are harnessed to develop the oxy-alkynylation of allenoates under external-oxidant-free conditions. Detailed mechanistic investigations such as 31 P NMR, control experiments, mass studies, and cyclic voltammetric (CV) analysis have been performed to support the proposed reaction mechanism.

18.
Res Sq ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461542

RESUMEN

The gold π-acid activation under electrochemical condition is achieved for the first time. While EAO allowing easy access to gold(III) intermediates over alternative chemical oxidation under mild conditions, the reported examples so far limited to coupling reactions due to the rapid AuIII reductive elimination. Using aryl hydrazine-HOTf salt as precursors, the π-activation reaction mode was realized through oxidation relay. Both alkene and alkyne di-functionalization were achieved with excellent functional group compatibility and regioselectivity, which extended the versatility and utility of electrochemical gold redox chemistry for future applications to come.

19.
Metallomics ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353903

RESUMEN

Copper (Cu) is essential for most organisms, but it can be poisonous in excess, through mechanisms such as protein aggregation, trans-metallation, and oxidative stress. The latter could implicate the formation of potentially harmful reactive oxygen species (O2•-, H2O2, and HO•) via the redox cycling between Cu(II)/Cu(I) states in the presence of dioxygen and physiological reducing agents such as ascorbate (AscH), cysteine (Cys), and the tripeptide glutathione (GSH). Although the reactivity of Cu with these reductants has been previously investigated, the reactions taking place in a more physiologically relevant mixture of these biomolecules are not known. Hence, we report here on the reactivity of Cu with binary and ternary mixtures of AscH, Cys, and GSH. By measuring AscH and thiol oxidation, as well as HO• formation, we show that Cu reacts preferentially with GSH and Cys, halting AscH oxidation and also HO• release. This could be explained by the formation of Cu-thiolate clusters with both GSH and, as we first demonstrate here, Cys. Moreover, we observed a remarkable acceleration of Cu-catalyzed GSH oxidation in the presence of Cys. We provide evidence that both thiol-disulfide exchange and the generated H2O2 contribute to this effect. Based on these findings, we speculate that Cu-induced oxidative stress may be mainly driven by GSH depletion and/or protein disulfide formation rather than by HO• and envision a synergistic effect of Cys on Cu toxicity.


Asunto(s)
Cobre , Cisteína , Especies Reactivas de Oxígeno/metabolismo , Cobre/metabolismo , Cisteína/química , Peróxido de Hidrógeno/metabolismo , Glutatión/metabolismo , Ácido Ascórbico/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo/química
20.
Angew Chem Int Ed Engl ; 62(35): e202307178, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37335756

RESUMEN

Titanium-based catalysis in single electron transfer (SET) steps has evolved into a versatile approach for the synthesis of fine chemicals and first attempts have recently been made to enhance its sustainability by merging it with photo-redox (PR) catalysis. Here, we explore the photochemical principles of all-Ti-based SET-PR-catalysis, i.e. in the absence of a precious metal PR-co-catalyst. By combining time-resolved emission with ultraviolet-pump/mid-infrared-probe (UV/MIR) spectroscopy on femtosecond-to-microsecond time scales we quantify the dynamics of the critical events of entry into the catalytic cycle; namely, the singlet-triplet interconversion of the do-it-all titanocene(IV) PR-catalyst and its one-electron reduction by a sacrificial amine electron donor. The results highlight the importance of the PR-catalyst's singlet-triplet gap as a design guide for future improvements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA