Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 78(12): 5150-5163, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36070208

RESUMEN

BACKGROUND: Brazil is the largest grower of the world's 26 million ha of sugarcane, Saccharum officinarum. Pest damage mainly by the sugarcane borer, Diatraea saccharalis (F.), is a great challenge to the sugarcane industry. To control D. saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to two Bt sugarcane varieties: CTC20BT expressing Cry1Ab and CTC9001BT expressing Cry1Ac. Here we report the results of the first study related to Bt resistance in a sugarcane cropping system. RESULTS: Larval survivorships of these families in an F2 screen on CTC20BT were highly correlated with their survival on CTC9001BT, whereas the Cry1Ac tissues exhibited greater insecticidal activities than Cry1Ab. Resistance allele frequencies (RAFs) for populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). CONCLUSIONS: RAFs to Cry1Ab and Cry1Ac varied among Brazilian D. saccharalis populations. Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring, and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. MINI ABSTRACT: To control Diatraea saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting in Brazil, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to Cry1Ab and Cry1Ac sugarcane plants Resistance allele frequencies (RAFs) for the populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for the São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of non-Bt maize refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that effective mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. © 2022 Society of Chemical Industry.


Asunto(s)
Mariposas Nocturnas , Saccharum , Animales , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/farmacología , Endotoxinas/farmacología , Brasil , Alelos , Proteínas Bacterianas/farmacología , Zea mays/genética , Grano Comestible , Plantas Modificadas Genéticamente
2.
Pest Manag Sci ; 72(8): 1578-84, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26581167

RESUMEN

BACKGROUND: The soybean looper (SBL), Chrysodeixis includens (Walker), is one of the most important soybean pests in Brazil. MON 87701 × MON 89788 soybean expressing Cry1Ac has been recently deployed in Brazil, providing high levels of control against the primary lepidopteran pests. To support insect resistance management (IRM) programmes, the baseline susceptibility of SBL to Cry1Ac was assessed, and the resistance allele frequency was estimated on the basis of an F2 screen. RESULTS: The toxicity (LC50 ) of Cry1Ac ranged from 0.39 to 2.01 µg mL(-1) diet among all SBL field populations collected from crop seasons 2008/09 to 2012/13, which indicated approximately fivefold variation. Cry1Ac diagnostic concentrations of 5.6 and 18 µg mL(-1) diet were established for monitoring purposes, and no shift in mortality was observed. A total of 626 F2 family lines derived from SBL collected from locations across Brazil during crop season 2014/15 were screened for the presence of Cry1Ac resistance alleles. None of the 626 families survived on MON 87701 × MON 89788 soybean leaf tissue (joint frequency 0.0004). CONCLUSIONS: SBL showed high susceptibility and low resistance allele frequency to Cry1Ac across the main soybean-producing regions in Brazil. These findings meet important criteria for effective IRM strategy. © 2015 Society of Chemical Industry.


Asunto(s)
Endotoxinas/genética , Glycine max/genética , Proteínas Hemolisinas/genética , Mariposas Nocturnas/fisiología , Control Biológico de Vectores , Animales , Brasil , Frecuencia de los Genes , Larva/fisiología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA