Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Front Microbiol ; 15: 1421749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224222

RESUMEN

Pyoverdines are high affinity siderophores produced by most Pseudomonas with a wide role in microbial interspecies interactions. They are primarily composed of a conserved chromophore moiety, an acyl side chain and a peptide backbone which may be highly variable among strains. Upon ferric iron sequestration, pyoverdines are internalized through specialized receptors. The peptide precursor of pyoverdine, termed ferribactin, is synthesized by a set of non-ribosomal peptide synthetase (NRPS) enzymes and further modified by tailoring enzymes. While PvdL, the NRPS responsible for the synthesis of the peptide moiety that derives into the chromophore is conserved, the NRPSs for the peptide backbone are different across fluorescent Pseudomonas. Although the variation of pyoverdine is a widely recognized characteristic within the genus, the evolutionary events associated with the diversity and distribution of this trait remain mostly unknown. This study analyzed the NRPSs clusters for the biosynthesis of the peptide backbone of ferribactin in the genomes of a representative subset of strains of the Pseudomonas fluorescens complex. Bioinformatic analysis of the specificity of adenylation domains of the NRPSs allowed the prediction of 30 different pyoverdine variants. Phylogenetic reconstruction and mapping of the NRPS clusters pinpointed two different general levels of modifications. In the first level, a complete replacement of the set of NRPRs by horizontal transfer occurs. In the second level, the original set of NRPSs is modified through different mechanisms, including partial substitution of the NRPS genes by horizontal transfer, adenylation domain specificity change or NRPS accessory domain gain/loss.

2.
Genes (Basel) ; 15(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202408

RESUMEN

The rhizosphere of plants contains a wide range of microorganisms that can be cultivated and used for the benefit of agricultural practices. From garden soil near the rhizosphere region, Strain ES10-3-2-2 was isolated, and the cells were Gram-negative, aerobic, non-spore-forming rods that were 0.3-0.8 µm in diameter and 1.5-2.5 µm in length. The neighbor-joining method on 16S rDNA similarity revealed that the strain exhibited the highest sequence similarities with "Fibrivirga algicola JA-25" (99.2%) and Fibrella forsythia HMF5405T (97.3%). To further explore its biotechnological potentialities, we sequenced the complete genome of this strain employing the PacBio RSII sequencing platform. The genome of Strain ES10-3-2-2 comprises a 6,408,035 bp circular chromosome with a 52.8% GC content, including 5038 protein-coding genes and 52 RNA genes. The sequencing also identified three plasmids measuring 212,574 bp, 175,683 bp, and 81,564 bp. Intriguingly, annotations derived from the NCBI-PGAP, eggnog, and KEGG databases indicated the presence of genes affiliated with radiation-resistance pathway genes and plant-growth promotor key/biofertilization-related genes regarding Fe acquisition, K and P assimilation, CO2 fixation, and Fe solubilization, with essential roles in agroecosystems, as well as genes related to siderophore regulation. Additionally, T1SS, T6SS, and T9SS secretion systems are present in this species, like plant-associated bacteria. The inoculation of Strain ES10-3-2-2 to Arabidopsis significantly increases the fresh shoot and root biomass, thereby maintaining the plant quality compared to uninoculated controls. This work represents a link between radiation tolerance and the plant-growth mechanism of Strain ES10-3-2-2 based on in vitro experiments and bioinformatic approaches. Overall, the radiation-tolerant bacteria might enable the development of microbiological preparations that are extremely effective at increasing plant biomass and soil fertility, both of which are crucial for sustainable agriculture.


Asunto(s)
Genoma Bacteriano , Rizosfera , Microbiología del Suelo , Filogenia , Agricultura/métodos , ARN Ribosómico 16S/genética
3.
Pharmaceutics ; 16(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39204425

RESUMEN

Growing resistance to traditional antibiotics poses a global threat to public health. In this regard, modification of known antibiotics, but with limited applications due to side effects, is one of the extremely promising approaches at present. In this study, we proposed the synthesis of novel complex polymeric conjugates of the peptide antibiotic colistin (CT). A biocompatible and water-soluble synthetic glycopolymer, namely, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was used as a polymer carrier. In addition to monoconjugates containing CT linked to PMAG by hydrolyzable and stable bonds, a set of complex conjugates also containing the siderophore deferoxamine (DFOA) and vitamin B12 was developed. The structures of the conjugates were confirmed by 1H NMR and FTIR-spectroscopy, while the compositions of conjugates were determined by UV-Vis spectrophotometry and HPLC analysis. The buffer media with pH 7.4, corresponding to blood or ileum pH, and 5.2, corresponding to the intestinal pH after ingestion or pH in the focus of inflammation, were used to study the release of CT. The resulting conjugates were examined for cytotoxicity and antimicrobial activity. All conjugates showed less cytotoxicity than free colistin. A Caco-2 cell permeability assay was carried out for complex conjugates to simulate the drug absorption in the intestine. In contrast to free CT, which showed very low permeability through the Caco-2 monolayer, the complex polymeric conjugates of vitamin B12 and CT provided significant transport. The antimicrobial activity of the conjugates depended on the conjugate composition. It was found that conjugates containing CT linked to the polymer by a hydrolyzable bond were found to be more active than conjugates with a non-hydrolyzable bond between CT and PMAG. Conjugates containing DFOA complexed with Fe3+ were characterized by enhanced antimicrobial activity against Pseudomonas aeruginosa compared to other conjugates.

4.
Methods Enzymol ; 702: 121-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155108

RESUMEN

Siderophores are low-molecular-weight organic bacterial and fungal secondary metabolites that form high affinity complexes with Fe(III). These Fe(III)-siderophore complexes are part of the siderophore-mediated Fe(III) uptake mechanism, which is the most widespread strategy used by microbes to access sufficient iron for growth. Microbial competition for limited iron is met by biosynthetic gene clusters that encode for the biosynthesis of siderophores with variable molecular scaffolds and iron binding motifs. Some classes of siderophores have well understood biosynthetic pathways, which opens opportunities to further expand structural and property diversity using precursor-directed biosynthesis (PDB). PDB involves augmenting culture medium with non-native substrates to compete against native substrates during metabolite assembly. This chapter provides background information and technical details of conducting a PDB experiment towards producing a range of different analogues of the archetypal hydroxamic acid siderophore desferrioxamine B. This includes processes to semi-purify the culture supernatant and the use of liquid chromatography-tandem mass spectrometry for downstream analysis of analogues and groups of constitutional isomers.


Asunto(s)
Sideróforos , Sideróforos/biosíntesis , Sideróforos/química , Sideróforos/metabolismo , Espectrometría de Masas en Tándem/métodos , Deferoxamina/metabolismo , Deferoxamina/química , Cromatografía Liquida/métodos , Vías Biosintéticas , Familia de Multigenes , Hierro/metabolismo , Hierro/química , Medios de Cultivo/química , Medios de Cultivo/metabolismo
5.
Methods Enzymol ; 702: 189-214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155111

RESUMEN

The C-diazeniumdiolate (N-nitrosohydroxylamine) group in the amino acid graminine (Gra) is a newly discovered Fe(III) ligand in microbial siderophores. Graminine was first identified in the siderophore gramibactin, and since this discovery, other Gra-containing siderophores have been identified, including megapolibactins, plantaribactin, gladiobactin, trinickiabactin (gramibactin B), and tistrellabactins. The C-diazeniumdiolate is photoreactive in UV light which provides a convenient characterization tool for this type of siderophore. This report details the process of genomics-driven identification of bacteria producing Gra-containing siderophores based on selected biosynthetic enzymes, as well as bacterial culturing, isolation and characterization of the C-diazeniumdiolate siderophores containing Gra.


Asunto(s)
Sideróforos , Sideróforos/química , Sideróforos/aislamiento & purificación , Sideróforos/metabolismo , Compuestos Azo/química , Compuestos Azo/metabolismo
6.
Methods Enzymol ; 702: 21-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155112

RESUMEN

Siderophore-antibiotic conjugates (SACs) are of past and current interest for delivering antibacterials into Gram-negative bacterial pathogens that express siderophore receptors. Studies of SACs are often multifaceted and involve chemical and biological approaches. Major goals are to evaluate the antimicrobial activity and uptake of novel SACs and use the resulting data to inform further mode-of-action studies and molecular design strategies. In this chapter, we describe four key methods that we apply when investigating the antimicrobial activity and uptake of novel SACs based on the siderophore enterobactin (Ent). These methods are based on approaches from the siderophore literature as well as established protocols for antimicrobial activity testing, and include assays for evaluating SAC antimicrobial activity, time-kill kinetics, siderophore competition, and bacterial cell uptake using 57Fe. These assays have served us well in characterizing our Ent-based conjugates and can be applied to study SACs that use other siderophores as targeting vectors.


Asunto(s)
Antibacterianos , Enterobactina , Sideróforos , Sideróforos/química , Sideróforos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Enterobactina/química , Enterobactina/metabolismo , Pruebas de Sensibilidad Microbiana/métodos
7.
Methods Enzymol ; 702: 317-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155117

RESUMEN

Microorganisms, plants, and animals alike have specialized acquisition pathways for obtaining metals, with microorganisms and plants biosynthesizing and secreting small molecule natural products called siderophores and metallophores with high affinities and specificities for iron or other non-iron metals, respectively. This chapter details a novel approach to discovering metal-binding molecules, including siderophores and metallophores, from complex samples ranging from microbial supernatants to biological tissue to environmental samples. This approach, called Native Metabolomics, is a mass spectrometry method in which pH adjustment and metal infusion post-liquid chromatography are interfaced with ion identity molecular networking (IIMN). This rule-based data analysis workflow that enables the identification of metal-binding species based on defined mass (m/z) offsets with the same chromatographic profiles and retention times. Ion identity molecular networking connects compounds that are structurally similar by their fragmentation pattern and species that are ion adducts of the same compound by chromatographic shape correlations. This approach has previously revealed new insights into metal binding metabolites, including that yersiniabactin can act as a biological zincophore (in addition to its known role as a siderophore), that the recently elucidated lepotchelin natural products are cyanobacterial metallophores, and that antioxidants in traditional medicine bind iron. Native metabolomics can be conducted on any liquid chromatography-mass spectrometry system to explore the binding of any metal or multiple metals simultaneously, underscoring the potential for this method to become an essential strategy for elucidating biological metal-binding molecules.


Asunto(s)
Espectrometría de Masas , Metabolómica , Sideróforos , Sideróforos/metabolismo , Sideróforos/química , Sideróforos/análisis , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Hierro/metabolismo , Hierro/análisis
8.
Methods Enzymol ; 702: 281-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155116

RESUMEN

Iron is a crucial secondary metabolite for bacterial proliferation, but its bioavailability under infection conditions is limited by the low solubility of ferric ion and the host's ability to sequester iron by protein chelation. In these iron limiting conditions, bacteria produce and secrete low molecular weight ferric ion chelators, siderophores, to scavenge host iron. Iron bound siderophores are recognized by surface displayed receptors and internalized by active transport preceding the liberation of the iron payload by reduction or cleavage of the siderophore. The traditional paradigms surrounding the interactions between siderophores and their corresponding receptors have relied on canonical protein-ligand binding models that do not accurately reflect the conditions experienced by siderophore binding proteins (SBPs). Research by the Raymond group suggested that a ligand displacement model does not fully describe the role of SBPs in siderophore transport where the ferric ion can be shuttled between siderophore molecules during the transport process. This work inspired further research by the Wencewicz group, which demonstrated that the Staphylococcus aureus SBP FhuD2 can catalyze the transfer of iron from the biological iron source holo-transferrin to a SBP bound iron-free siderophore. The discovery of this ferrichelatase activity represents a novel mechanism of receptor mediated active transport which raises the question: is ferrichelatase activity a unique feature of FhuD2 or a previously unappreciated hallmark of SBPs? This chapter highlights a series of protocols for the general functional characterization of SBPs and methodologies to assay ferrichelatase activity with the hopes of providing the tools to answer this question.


Asunto(s)
Hierro , Sideróforos , Staphylococcus aureus , Sideróforos/metabolismo , Hierro/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
9.
FEBS Open Bio ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123319

RESUMEN

Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.

10.
Methods Enzymol ; 702: 1-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155107

RESUMEN

The biosynthesis of many bacterial siderophores employs a member of a family of ligases that have been defined as NRPS-independent siderophore (NIS) synthetases. These NIS synthetases use a molecule of ATP to produce an amide linkage between a carboxylate and an amine. Commonly used carboxylate substrates include citrate or α-ketoglutarate, or derivatives thereof, while the amines are often hydroxamate derivatives of lysine or ornithine, or their decarboxylated forms cadaverine and putrescine. Enzymes that employ three substrates to catalyze a reaction may proceed through alternate mechanisms. Some enzymes use sequential mechanisms in which all three substrates bind prior to any chemical steps. In such mechanisms, substrates can bind in a random, ordered, or mixed fashion. Alternately, other enzymes employ a ping-pong mechanism in which a chemical step occurs prior to the binding of all three substrates. Here we describe an enzyme assay that will distinguish among these different mechanisms for the NIS synthetase, using IucA, an enzyme involved in the production of aerobactin, as the model system.


Asunto(s)
Péptido Sintasas , Sideróforos , Sideróforos/metabolismo , Sideróforos/química , Péptido Sintasas/metabolismo , Péptido Sintasas/química , Cinética , Especificidad por Sustrato , Pruebas de Enzimas/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Ácidos Cetoglutáricos/metabolismo , Ligasas/metabolismo , Ligasas/química
11.
Sci Total Environ ; 951: 175577, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39155010

RESUMEN

Asbestos poses a substantial environmental health risk, and biological treatment offers a promising approach to mitigate its impact by altering its chemical composition. However, the dynamics of microbial co-inoculation in asbestos bioremediation remain poorly understood. This study investigates the effect of microbial single cultures and co-cultures on modifying crocidolite and chrysotile fibers, focusing on the extraction of iron and magnesium. Seventy bacterial and eighty-three fungal strains were isolated from five diverse sites, characterized phylogenetically using the 16S rRNA gene and ITS region, respectively, and assessed for siderophore and organic acid production. Most bacterial strains were identified as Pseudomonas, while Penicillium predominated among fungal strains. Ten bacterial and 25 fungal strains were found to produce both organic compounds. Four microbial co-cultures (one bacterium-bacterium, two fungus-bacterium, and one fungus-fungus) exhibiting synergistic effects in plate assays, alongside their respective single cultures, were incubated with crocidolite and chrysotile. ICP-OES analysis revealed that in crocidolite, the co-culture HRF19-HRB12 removed more iron than their single cultures, while Penicillium TPF36 showed the highest iron removal. The co-culture of two Pseudomonas strains (HRB12-RB5) exhibited the highest magnesium concentration in the supernatant. In chrysotile, the co-culture HRB12-RB5 removed more iron than their individual cultures, with Penicillium TFSF27 exhibiting the highest iron concentration in the solution. Penicillium TFSF27 and the co-culture TFSF27-TPF36 demonstrated the highest magnesium removal. SEM-XRMA analysis showed a significant reduction in iron and magnesium content, confirming elemental extraction from the fibers' structure. This study significantly broadens the range of microbial strains capable of modifying asbestos fibers and underscores the potential of microbial co-cultures in asbestos remediation.

12.
Sci Rep ; 14(1): 18795, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138320

RESUMEN

Siderophores are specialized molecules produced by bacteria and fungi to scavenge iron, a crucial nutrient for growth and metabolism. Catecholate-type siderophores are mainly produced by bacteria, while hydroxamates are mostly from fungi. This study investigates the capacity of nine hydroxamate-type siderophores from fungi and Streptomyces to facilitate iron acquisition by the human pathogen Pseudomonas aeruginosa. Growth assays under iron limitation and 55Fe incorporation tests showed that all nine siderophores promoted bacterial growth and iron transport. The study also aimed to identify the TonB-dependent transporters (TBDTs) involved in iron import by these siderophores. Using mutant strains lacking specific TBDT genes, it was found that iron is imported into P. aeruginosa cells by FpvB for coprogen, triacetylfusarinine, fusigen, ferrirhodin, and ferrirubin. Iron complexed by desferioxamine G is transported by FpvB and FoxA, ferricrocin-Fe and ferrichrycin-Fe by FpvB and FiuA, and rhodotoluric acid-Fe by FpvB, FiuA, and another unidentified TBDT. These findings highlight the effectiveness of hydroxamate-type siderophores in iron transport into P. aeruginosa and provide insights into the complex molecular mechanisms involved, which are important for understanding microbial interactions and ecological balance.


Asunto(s)
Proteínas Bacterianas , Ácidos Hidroxámicos , Hierro , Pseudomonas aeruginosa , Sideróforos , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hierro/metabolismo , Ácidos Hidroxámicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Ferricromo/metabolismo , Ferricromo/análogos & derivados , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de la Membrana Bacteriana Externa , Proteínas de la Membrana , Receptores de Superficie Celular
13.
Bioorg Med Chem ; 112: 117842, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173538

RESUMEN

The decline of antibiotics efficacy worldwide has recently reached a critical point urging for the development of new strategies to regain upper hand on multidrug resistant bacterial strains. In this context, the raise of photodynamic therapy (PDT), initially based on organic photosensitizers (PS) and more recently on organometallic PS, offers promising perspectives. Many PS exert their biological effects through the generation of reactive oxygen species (ROS) able to freely diffuse into and to kill surrounding bacteria. Hijacking of the bacterial iron-uptake systems with siderophore-PS conjugates would specifically target pathogens. Here, we report the synthesis of unprecedented conjugates between the siderophore desferrioxamine B (DFOB) and an antibacterial iridium(III) PS. Redox properties of the new conjugates have been determined at excited states and compared to that of an antibacterial iridium PS previously reported by our groups. Tested on nosocomial pathogen Pseudomonas aeruginosa and other bacteria, these conjugates demonstrated significant inhibitory activity when activated with blue LED light. Ir(III) conjugate and iridium free DFOB-2,2'-dipyridylamine ligands were crystallized in complex with FoxA, the outer membrane transporter involved in DFOB uptake in P. aeruginosa and revealed details of the binding mode of these unprecedented conjugates.

14.
Biometals ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198338

RESUMEN

Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2'-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logKOH) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.

15.
Molecules ; 29(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39202968

RESUMEN

This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.


Asunto(s)
Antibacterianos , Hierro , Sideróforos , Sideróforos/química , Sideróforos/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Hierro/metabolismo , Hierro/química , Transporte Biológico , Cefiderocol , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Diseño de Fármacos , Humanos , Cefalosporinas/química , Compuestos Férricos/química
16.
J Agric Food Chem ; 72(33): 18455-18464, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109629

RESUMEN

Siderophores are small molecule iron chelators. The entomopathogenic fungus Beauveria bassiana produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in B. bassiana. Among the siderophore biosynthesis genes (SID), BbSidA was required for the production of most siderophores, and the SidC and SidD biosynthesis gene clusters were indispensable for the production of ferricrocin and fusarinine C, respectively. Biosynthesis genes play various roles in siderophore production, vegetative growth, stress resistance, development, and virulence, in which BbSidA plays the most important role. Accordingly, B. bassiana employs a cocktail of siderophores for iron metabolism, which is essential for fungal physiology and host interactions. This study provides the initial network for the genetic modification of siderophore biosynthesis, which not only aims to improve the efficacy of biocontrol agents but also ensures the efficient production of siderophores.


Asunto(s)
Beauveria , Vías Biosintéticas , Proteínas Fúngicas , Sideróforos , Beauveria/metabolismo , Beauveria/genética , Sideróforos/metabolismo , Sideróforos/biosíntesis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Animales , Insectos/microbiología , Familia de Multigenes , Ferricromo/análogos & derivados
17.
Chembiochem ; : e202400480, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965052

RESUMEN

Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.

18.
Environ Int ; 190: 108915, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084127

RESUMEN

Pathogenic microorganisms with antibiotic resistance genes (ARGs) pose a serious threat to public health and soil ecology. Although new drugs and available antibacterial materials can kill ARG carriers but accidentally kill beneficial microorganisms. Therefore, the rapid enrichment and separation of ARGs and their carriers from soil is becoming an important strategy for controlling the diffusion of ARGs. Hydroxamate siderophore (HDS) has gained widespread attentions for its involvement in trace element transfer among microorganisms in the soil environment, we thus explored an in-situ trapping-enrichment method for ARGs and their carriers via a small molecular HDS secreted by Pseudomonas fluorescens HMP01. In this study, we demonstrate that HDS significantly in-situ traps and enriches certain ARGs, including chloramphenicol, MLS, rifamycin, and tetracycline resistance genes in the soil environment. The enrichment efficiencies were 1473-fold, 38-fold, 17-fold, and 5-fold, respectively, higher than those in the control group. Specifically, the primary enriched ARGs were rpoB, mphL, catB2, and tetA(60), and Bacillus, Rhizobium, Rossellomorea, and Agrobacterium were hosts for these ARGs. This enrichment was caused by the upregulation of chemotaxis genes (e.g., cheW, cheC, and cheD) and rapid biofilm formation within the enriched bacterial population. Notably, representative ARGs such as cat, macB, and rpoB were significantly reduced by 36%, 85.7%, and 72%, respectively, in the paddy soil after HDS enrichment. Our research sheds light on the potential application of siderophore as a rapping agent for the eco-friendly reduction of ARGs and their carriers in soil environments.


Asunto(s)
Sideróforos , Microbiología del Suelo , Ácidos Hidroxámicos , Pseudomonas fluorescens , Farmacorresistencia Microbiana/genética , Suelo/química , Genes Bacterianos
19.
Biofouling ; 40(8): 514-526, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39077794

RESUMEN

Efflux pump inhibitors are a potential therapeutic strategy for managing antimicrobial resistance and biofilm formation. This article evaluated the effect of carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on the biofilm growth dynamics and the production of virulence factors by Burkholderia pseudomallei. The effects of CCCP on planktonic, growing, and mature biofilm, interaction with antibacterial drugs, and protease and siderophore production were assessed. CCCP MICs ranged between 128 and 256 µM. The CCCP (128 µM) had a synergic effect with all the antibiotics tested against biofilms. Additionally, CCCP reduced (p < .05) the biomass of biofilm growth and mature biofilms at 128 and 512 µM, respectively. CCCP also decreased (p < .05) protease production by growing (128 µM) and induced (p < .05) siderophore release by planktonic cells (128 µM) growing biofilms (12.8 and 128 µM) and mature biofilms (512 µM). CCCP demonstrates potential as a therapeutic adjuvant for disassembling B. pseudomallei biofilms and enhancing drug penetration.


Asunto(s)
Antibacterianos , Biopelículas , Burkholderia pseudomallei , Carbonil Cianuro m-Clorofenil Hidrazona , Pruebas de Sensibilidad Microbiana , Péptido Hidrolasas , Sideróforos , Biopelículas/efectos de los fármacos , Sideróforos/farmacología , Burkholderia pseudomallei/efectos de los fármacos , Burkholderia pseudomallei/fisiología , Antibacterianos/farmacología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Péptido Hidrolasas/metabolismo , Factores de Virulencia
20.
Front Microbiol ; 15: 1433983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989020

RESUMEN

Siderophores are produced by bacteria in iron-restricted conditions. However, we found maltose could induce the biosynthesis of the siderophore lysochelin in Lysobacter sp. 3655 in rich media that are not compatible with siderophore production. Maltose markedly promoted cell growth, with over 300% increase in cell density (OD600) when LB medium was added with maltose (LBM). While lysochelin was not detectable when OD600 in LBM was below 5.0, the siderophore was clearly produced when OD600 reached 7.5 and dramatically increased when OD600 was 15.0. Coincidently, the transcription of lysochelin biosynthesis genes was remarkably enhanced following the increase of OD600. Conversely, the iron concentration in the cell culture dropped to 1.2 µM when OD600 reached 15.0, which was 6-fold lower than that in the starting medium. Moreover, mutants of the maltose-utilizing genes (orf2677 and orf2678) or quorum-sensing related gene orf644 significantly lowered the lysochelin yield. Transcriptomics analysis showed that the iron-utilizing/up-taking genes were up-regulated under high cell density. Accordingly, the transcription of lysochelin biosynthetic genes and the yield of lysochelin were stimulated when the iron-utilizing/up-taking genes were deleted. Finally, lysochelin biosynthesis was positively regulated by a TetR regulator (ORF3043). The lysochelin yield in orf3043 mutant decreased to 50% of that in the wild type and then restored in the complementary strain. Together, this study revealed a previously unrecognized mechanism for lysochelin biosynthetic regulation, by which the siderophore could still be massively produced in Lysobacter even grown in a rich culture medium. This finding could find new applications in large-scale production of siderophores in bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA