Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Anal Bioanal Chem ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126504

RESUMEN

Water, renowned for its sustainability and minimal toxicity, is an ideal candidate for environmentally friendly solvent-based microextraction. However, its potential as an extractant solvent in miniaturized sample preparation remains largely unexplored. This paper pioneers using water as the extraction solvent in headspace single-drop microextraction (HS-SDME) for N-nitrosamines from losartan tablets. Autonomous HS-SDME is executed by an Arduino-controlled, lab-made Cartesian robot, using water for the online preconcentration of enriched extracts through direct injection into a column-switching system. Critical experimental parameters influencing HS-SDME performance are systematically explored through univariate and multivariate experiments. While most previously reported methods for determining N-nitrosamines in pharmaceutical formulations rely on highly selective mass spectrometry detection techniques to handle the strong matrix effects typical of pharmaceutical samples, the water-based HS-SDME method efficiently eliminates the interfering effects of a large amount of the pharmaceutical active ingredient and tablet excipients, allowing straightforward analysis using high-performance liquid chromatography with ultraviolet detection (HPLC-UV-Vis). Under optimized conditions, the developed method exhibits linear responses from 100 to 2400 ng g-1, demonstrating appropriate detectability, precision, and accuracy for the proposed application. Additionally, the environmental sustainability of the method is assessed using the AGREEprep methodology, positioning it as an outstanding green alternative for determining hazardous contaminants in pharmaceutical products.

2.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064875

RESUMEN

This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents.


Asunto(s)
Disolventes Eutécticos Profundos , Proteínas Fúngicas , Enlace de Hidrógeno , Lipasa , Agua , Lipasa/química , Lipasa/metabolismo , Agua/química , Disolventes Eutécticos Profundos/química , Proteínas Fúngicas/química , Catálisis , Hidrólisis , Solventes/química , Biocatálisis , Cinética
3.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38929063

RESUMEN

Ugni candollei, commonly known as white murta, is a native Chilean berry with a polyphenol composition that has been underexplored. This study aimed to establish a comprehensive profile of white murta polyphenols using ultra-performance liquid chromatography electrospray ionization Orbitrap mass spectrometry (UPLC-ESI-ORBITRAP MS). Additionally, it compared the efficacy of conventional extraction methods with emerging techniques such as deep eutectic solvent (DES) extraction and hot pressurized water extraction (HPWE). The analysis tentatively identified 107 phenolic compounds (84 of them reported for the first time for this cultivar), including 25 phenolic acids, 37 anthocyanins, and 45 flavonoids. Among the prominent and previously unreported polyphenols are ellagic acid acetyl-xyloside, 3-p-coumaroylquinic acid, cyanidin 3-O-(6'-caffeoyl-glucoside, and phloretin 2'-O-xylosyl-glucoside. The study found HPWE to be a promising alternative to traditional extraction of hydroxybenzoic acids, while DES extraction was less effective across all categories. The findings reveal that white murta possesses diverse phenolic compounds, potentially linked to various biological activities.

4.
Gels ; 10(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38786231

RESUMEN

Food gels are viscoelastic substances used in various gelled products manufactured around the world. Polysaccharides are the most common food gelling agents. The aim of this work was the production and characterization of a gel produced in a blue corn flour fermentation process, where different proportions were used of blue corn (Zea mays L.) flour and Czapek Dox culture medium (90 mL of culture medium with 10 g of blue corn flour, 80 mL of culture medium with 20 g of blue corn flour, and 70 mL of culture medium with 30 g of blue corn flour) and were fermented for three different durations (20, 25, and 30 days) with the Colletotrichum gloeosporioides fungus. A characterization of the gel was carried out studying the rheological properties, proximal analysis, toxicological analysis, microscopic structure, and molecular characterization, in addition to a solubility test with three different organic solvents (ethanol, hexane, and ethyl acetate, in addition to water). The results obtained showed in the rheological analysis that the gel could have resistance to high temperatures and a reversible behavior. The gel is soluble in polar solvents (ethanol and water). The main chemical components of the gel are carbohydrates, especially polysaccharides, and it was confirmed by FT-IR spectroscopy that the gel may be composed of pectin.

5.
Foods ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731745

RESUMEN

There is a growing interest in exploring new natural sources of colorants. This study aimed to extract anthocyanins from broken black bean hulls (Phaseolus vulgaris L.) by modifying water with a eutectic mixture (choline chloride:citric acid (ChCl:Ca)). Ultrasound-assisted extraction (UAE) was employed and optimized in terms of temperature (30-70 °C), ultrasound power (150-450 W), and eutectic mixture concentration in water (1-9% (w/v)), resulting in an optimal condition of 66 °C, 420 W, and 8.2% (w/v), respectively. The main quantified anthocyanins were delphinidin-3-O-glycoside, petunidin-3-O-glycoside, and malvidin-3-O-glycoside. The half-life of the anthocyanins at 60 °C increased twelvefold in the eutectic mixture extract compared to the control, and when exposed to light, the half-life was 10 times longer, indicating greater resistance of anthocyanins in the extracted eutectic mixture. Additionally, the extracts were concentrated through centrifuge-assisted cryoconcentration, with the initial cycle almost double the extract value, making this result more favorable regarding green metrics. The first concentration cycle, which showed vibrant colors of anthocyanins, was selected to analyze the color change at different pH levels. In general, the technology that uses eutectic mixtures as water modifiers followed by cryoconcentration proved to be efficient for use as indicators in packaging, both in quantity and quality of anthocyanins.

6.
Plants (Basel) ; 13(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732429

RESUMEN

Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry.

7.
Appl Microbiol Biotechnol ; 108(1): 234, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400930

RESUMEN

In recent years, microbial carotenoids have emerged as a promising alternative for the pharmaceutical and food industries, particularly in promoting human health due to their potent antioxidant and antimicrobial properties. Microbial carotenoids, particularly those produced by yeast, bacteria, and microalgae, are synthesized intracellularly, requiring the use of solvents for their effective extraction and recovery. The conventional use of toxic volatile organic solvents (VOCs) like hexane, petroleum ether, and dimethyl sulfoxide in the extraction of microbial carotenoids has been common. However, ongoing research is introducing innovative, non-toxic, environmentally friendly tailor-made solvents, such as ionic liquids (IL) and deep eutectic solvents (DES), indicating a new era of cleaner and biocompatible technologies. This review aims to highlight recent advancements in utilizing IL and DES for obtaining carotenoids from microorganisms. Additionally, we explore the utilization of in silico tools designed to determine the solubilities of microbial carotenoids in tailor-made DES and ILs. This presents a promising alternative for the scientific community, potentially reducing the need for extensive experimental screening of solvents for the recovery of microbial carotenoids in the separation processing. According to our expert perspective, both IL and DES exhibit a plethora of exceptional attributes for the recovery of microbial carotenoids. Nevertheless, the current employment of these solvents for recovery of carotenoids is restricted to scientific exploration, as their feasibility for practical application in industrial settings has yet to be conclusively demonstrated. KEY POINTS: • ILs and DES share many tailoring properties for the recovery of microbial carotenoids • The use of ILs and DES for microbial carotenoid extraction remains driven by scientific curiosity. • The economic feasibility of ILs and DES is yet to be demonstrated in industrial applications.


Asunto(s)
Carotenoides , Líquidos Iónicos , Humanos , Solventes , Antioxidantes , Dimetilsulfóxido
8.
Molecules ; 29(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257307

RESUMEN

In this study, we address the ecological challenges posed by automotive battery recycling, a process notorious for its environmental impact due to the buildup of hazardous waste like foundry slag. We propose a relatively cheap and safe solution for lead removal and recovery from samples of this type of slag. The analysis of TCLP extracts revealed non-compliance with international regulations, showing lead concentrations of up to 5.4% primarily in the form of anglesite (PbSO4), as detected by XRF/XRD. We employed deep eutectic solvents (DES) as leaching agents known for their biodegradability and safety in hydrometallurgical processing. Five operational variables were systematically evaluated: sample type, solvent, concentration, temperature, and time. Using a solvent composed of choline chloride and glycerin in a 2:1 molar ratio, we achieved 95% lead dissolution from acidic samples at 90 °C, with agitation at 470 rpm, a pulp concentration of 5%, and a 5 h duration. Furthermore, we successfully recovered 55% of the lead in an optimized solution using an electrowinning cell. This research demonstrates the ability of DES to decontaminate slag, enabling compliance with regulations, the recovery of valuable metals, and new possibilities for the remaining material.

9.
J Sep Sci ; 47(1): e2300804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234022

RESUMEN

The main goal of this work is to expand the availability of chiral columns for the analysis of agrochemicals by gas chromatography. A broader offer of chiral stationary phases would allow shifting toward enantioselective analytical techniques environmentally more friendly for those compounds. We prepared seven chiral capillary columns based on derivatives of either, ß-cyclodextrin or γ-cyclodextrins dissolved at high concentrations, in two typical polysiloxanes with different polarities, demonstrating not only the significance of the chiral selector but also of the polymer solvent for achieving adequate enantioseparation of some agrochemicals. The enantiorecognition ability of each column was evaluated with 20 volatile and semivolatile agrochemicals, possessing one or two chiral centers. Besides, to elute more polar agrochemicals, as well as to enhance enantioselectivity, three derivatization procedures targeting the carboxyl and/or amine group were evaluated. The results revealed that the prepared column consisting of octakis(2,3-di-O-acetyl-6-O-tertbutyldimethylsilyl)-γ-cyclodextrin dissolved in (14%-cyanopropyl-phenyl)-86%-methyl-polysiloxane provides the broadest enantiorecognition capacity. This column allowed the enantioseparation of seventeen chiral agrochemicals, including metalaxyl, furalaxyl, and four imidazolinones, which were not enantioseparated in the remaining columns. To the best of our knowledge, glufosinate, fluorochloridone, fenarimol, furalaxyl, and four imidazolinones were enantioseparated by gas chromatography for the first time.

10.
Food Chem ; 442: 138530, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271911

RESUMEN

Orange peels contain a considerable number of bioactive compounds such as carotenoids, that can be used as ingredients in high-value products. The aim of this study was to compare orange peel extracts obtained with different green solvents (vegetable oils, fatty acids, and deep eutectic solvents (DES)). In addition, the chemical characterization of a new hydrophobic DES formed by octanoic acid and l-proline (C8:Pro) was performed. The extracts were compared in terms of carotenoid extraction, antioxidant activity by three methods, color, and environmental impact. The results confirmed that the mixture of C8:Pro is a DES and showed the highest carotenoid extraction (46.01 µg/g) compared to hexane (39.28 µg/g). The antioxidant activity was also the highest in C8:Pro (2438.8 µM TE/mL). Finally, two assessment models were used to evaluate the greenness and sustainability of the proposed extractions. These results demonstrated the potential use of orange peels in the circular economy and industry.


Asunto(s)
Antioxidantes , Citrus sinensis , Solventes/química , Antioxidantes/química , Citrus sinensis/química , Carotenoides/química , Extractos Vegetales/química
11.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257203

RESUMEN

Nowadays, deep eutectic solvents (DESs) are seen as environmentally friendly alternatives with the potential to replace traditional solvents used in hydrometallurgical processes. Although DESs have been successfully applied in the recovery of metals from secondary sources, there is still innovative potential regarding DESs as green leaching agents applied in the recovery of metals from primary sources like polysulfide ores. This study aimed to evaluate the characteristics of DESs as solvents for some of the main metals present in typical polymetallic concentrates, like Cu, Fe, Pb, and Zn. Thus, three DESs based on choline chloride (ChCl) were prepared: 1:2 ChCl-urea (also known as reline), 1:2 ChCl-ethylene glycol (also known as ethaline), and 1:2 ChCl-glycerol (also known as glyceline). Then, dissolution tests at 30 °C were carried out with these DESs and different metal- (Cu, Fe, Pb, and Zn) bearing compounds (sulfates, oxides, and sulfides). According to the dissolution tests, it was found that the solubility of the studied metals (expressed as g of metal per Kg of DES) was dictated by the bearing species, reaching the dissolution of the metals from sulfates with values as high as two orders of magnitude higher than the metal solubility values for metal oxides and sulfides.

12.
J Mol Graph Model ; 126: 108649, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820463

RESUMEN

The excess level of carbon dioxide in the atmosphere has contributed a lot to global warming, occasioning several damages to the planet. Therefore, it is urgent to find ways to capture this gas. Then, the present work analyzed the temperature effect in CO2 absorption through deep eutectic solvents (DESs) based on urea and choline chloride using an in silico approach. The Molecular Dynamics (MD) simulations indicated that the increased temperature reduced the interaction potential of carbon dioxide molecules with the DESs components, indicating that the absorption process is more favorable at 303 K. On the other hand, the Noncovalent Interactions (NCI) simulations suggest that the increased temperature reduced the strong attractions and increased repulsive interactions between the carbon dioxide molecules with the solvent analyzed. Therefore, both in silico approaches suggest that the carbon dioxide absorption is more indicated at 303 K.


Asunto(s)
Dióxido de Carbono , Disolventes Eutécticos Profundos , Solventes , Temperatura , Colina
13.
Molecules ; 28(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005377

RESUMEN

This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.

14.
Semin Hear ; 44(4): 437-469, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818148

RESUMEN

This study aimed to scope the literature, identify knowledge gaps, appraise results, and synthesize the evidence on the audiological evaluation of workers exposed to solvents. We searched Medline, PubMed, Embase, CINAHL, and NIOSHTIC-2 up to March 22, 2021. Using Covidence, two authors independently assessed study eligibility, risk of bias, and extracted data. National Institute of Health Quality Assessment Tools was used in the quality evaluation of included studies; the Downs and Black checklist was used to assess the risk of bias. Of 454 located references, 37 were included. Twenty-five tests were studied: two tests to measure hearing thresholds, one test to measure word recognition in quiet, six electroacoustic procedures, four electrophysiological tests, and twelve behavioral tests to assess auditory processing skills. Two studies used the Amsterdam Inventory for Auditory Disability and Handicap. The quality of individual studies was mostly considered moderate, but the overall quality of evidence was considered low. The discrepancies between studies and differences in the methodologies/outcomes prevent recommending a specific test battery to assess the auditory effects of occupational solvents. Decisions on audiological tests for patients with a history of solvent exposures require the integration of the most current research evidence with clinical expertise and stakeholder perspectives.

15.
Food Res Int ; 173(Pt 1): 113266, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803579

RESUMEN

In this study, different Deep Eutectic Solvents based on choline chloride ([Ch]Cl) with carboxylic acids, sugars, and glycerol, were investigated as alternative solvents for the extraction of flavonoids from soybean and okara. Initially, the COSMO-SAC was investigated as a tool in solvent screening for the extraction of flavonoids. Experimental validation was performed using total flavonoid analysis with the solvents that showed greater interaction with the solutes. The extracts obtained from soybean and okara using the DES [Ch]Cl:acetic acid added with 30 % water showed the highest total flavonoid content, 1.05 mg eq. of catechin/g dry soybean and 0.94 mg eq. of catechin /g dry okara, respectively. For phenolic compound extraction, [Ch]Cl: acetic acid DES extracted approximately 1.16 mg GAE/g of soybean and 0.69 mg GAE/g of okara. For antioxidant activity, soybean and okara extracts obtained with [Ch]Cl: acetic acid showed FRAP results of 0.40 mg Trolox/mL of extract and 0.45 mg Trolox/mL of extract, respectively. In addition, the isoflavones daidzein, genistein, glycitein, daidzin, genistin, and glycitin were identified and quantified in the soybean and okara extracts obtained with DES [Ch]Cl: acetic acid with 30% water, totaling 1068.05 and 424.32 µg total isoflavones/g dry sample. Therefore, The COSMO-SAC model was a useful tool in solvent screening, saving time and costs. Also, DES can be an alternative solvent for extracting flavonoids to replace conventional organic solvents, respecting current environmental and human health concerns.


Asunto(s)
Catequina , Isoflavonas , Humanos , Flavonoides/análisis , Glycine max , Disolventes Eutécticos Profundos , Extractos Vegetales/análisis , Isoflavonas/análisis , Solventes/análisis , Agua , Acetatos
16.
Front Chem ; 11: 1233889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693168

RESUMEN

Deep eutectic solvents (DES) formed using choline chloride (ChCl), p-toluenesulfonic acid (pTSA) of stoichiometry ChCl: pTSA (1:1) and (1:2), and its ternary eutectic mixtures with phosphoric acid (PA) 85% as an additive (ChCl: pTSA: PA) were evaluated for cellulose nanocrystal (CNC) isolation. Initially, the hydrolytic efficiency to produce CNC of each DES was compared before and after adding phosphoric acid by Hammett acidity parameters and the Gutmann acceptor number. Moreover, different DES molar ratios and reaction time were studied at 80°C for CNC optimization. The nanomaterial characteristics were analyzed by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The ternary eutectic mixture ChCl: pTSA: PA molar ratio (1:1:1.35) was chosen as a suitable recyclable ternary system at the laboratory scale. A CNC yield of about 80% was obtained from the hydrolysis of commercial cellulose in five cycles of recovery, but it dropped to 35% in pre-pilot scaling. However, no variation in the average size of the resulting CNC was observed (132 ± 50 nm x 23 ± 4 nm), which presented high thermal stability (Tmax 362°C) and high crystallinity of about 80% after 3 h of reaction time.

17.
Nanotechnology ; 34(50)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37699360

RESUMEN

Solution blow spinning (SBS) is a promising alternative to produce fibrous matrices for a wide range of applications, such as packaging and biomedical devices. Polycaprolactone (PCL) is a biodegradable polyester commonly used for spinning. The usual choices for producing PCL solutions include chlorinated solvents (CS), such as chloroform. However, the high toxicity of CS makes it difficult for biological and green applications. This work evaluates the influence of two less toxic solvents, acetic acid (AA) and acetone (Acet), and their mixtures (AA/Acet) on the properties of PCL fibers produced by SBS. The results showed that Acet does not cause degradation of the PCL chains, in opposition to AA. Furthermore, adding acetone to the acetic acid tended to preserve the size of PCL chains. It was not possible to produce fibers using PCL in 100% acetone. However, the AA/Acet mixture allowed the efficient production of PCL fibers. The proportion of Acet and AA in the mixture modulated the fiber morphology and orientation, making it possible to use this green solvent system according to the desired application.

18.
Plants (Basel) ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631219

RESUMEN

In many analytical chemical procedures, organic solvents are required to favour a better global yield upon the separation, extraction, or isolation of the target phytochemical analyte. The selection of extraction solvents is generally based on the solubility difference between target analytes and the undesired matrix components, as well as the overall extraction procedure cost and safety. Hansen Solubility Parameters are typically used for this purpose. They are based on the product of three coordinated forces (hydrogen bonds, dispersion, and dipolar forces) calculated for any substance to predict the miscibility of a compound in a pure solvent, in a mixture of solvents, or in non-solvent compounds, saving time and costs on method development based on a scientific understanding of chemical composition and intermolecular interactions. This review summarises how Hansen Solubility Parameters have been incorporated into the classical and emerging (or greener) extraction techniques of phytochemicals as an alternative to trial-and-error approaches, avoiding impractical experimental conditions and resulting in, for example, saving resources and avoiding unnecessary solvent wasting.

19.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37507983

RESUMEN

Deep eutectic solvents (DES) are emerging as potent polyphenol extractors under normal atmospheric conditions. Yet, their effectiveness in hot pressurized liquid extraction (HPLE) must be studied more. We explored the ability of various water/DES and water/hydrogen bond donors (HBDs) mixtures in both atmospheric solid liquid extraction (ASLE) and HPLE (50%, 90 °C) for isolating specific polyphenol families from Carménère grape pomace. We assessed extraction yields based on total polyphenols, antioxidant capacity, and recovery of targeted polyphenols. The HBDs ethylene glycol and glycerol outperformed DES in atmospheric and pressurized extractions. Ethylene glycol exhibited a higher affinity for phenolic acids and flavonols, while flavanols preferred glycerol. Quantum chemical computations indicated that a high-water content in DES mixtures led to the formation of new hydrogen bonds, thereby reducing polyphenol-solvent interactions. HPLE was found to be superior to ASLE across all tested solvents. The elevated pressure in HPLE has caused significant improvement in the recovery of flavanols (17-89%), phenolic acids (17-1000%), and flavonols (81-258%). Scanning electron microscopy analysis of post-extraction residues suggested that high pressures collapse the plant matrix, thus easing polyphenol release.

20.
Polymers (Basel) ; 15(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37177256

RESUMEN

Currently, natural materials represent a sustainable option for the manufacture of biopolymers with numerous industrial applications and characteristics comparable with synthetic materials. Nopal mucilage (NM) is an excellent natural resource for the synthesis of bioplastics (BPs). In the present research, the fabrication of biopolymers by using NM is addressed. Changes in the plasticizer (sorbitol and cellulose) concentration, in addition to the implementation of two sources of starch (corn starch (CS) and potato starch (PS)) to obtain the surgical thread, were analyzed. The NM extracted was close to 14% with ethanol. During the characterization of the extract, properties such as moisture, humidity, viscosity, and functional groups, among others, were determined. In the CS and PS analysis, different structures of the polymeric chains were observed. BP degradation with different solvents was performed. Additionally, the addition of sorbitol and cellulose for the BP mixtures presenting the highest resistance to solvent degradation and less solubility to water was conducted. The obtained thread had a uniform diameter, good elasticity, and low capillarity compared to other prototypes reported in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA