Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glia ; 71(10): 2456-2472, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395323

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which patients lose motor functions due to progressive loss of motor neurons in the cortex, brainstem, and spinal cord. Whilst the loss of neurons is central to the disease, it is becoming clear that glia, specifically astrocytes, contribute to the onset and progression of neurodegeneration. Astrocytes play an important role in maintaining ion homeostasis in the extracellular milieu and regulate multiple brain functions by altering their extracellular concentrations. In this study, we have investigated the ability of astrocytes to maintain K+ homeostasis in the brain via direct measurement of the astrocytic K+ clearance rate in the motor and somatosensory cortices of an ALS mouse model (SOD1G93A ). Using electrophysiological recordings from acute brain slices, we show region-specific alterations in the K+ clearance rate, which was significantly reduced in the primary motor cortex but not the somatosensory cortex. This decrease was accompanied by significant changes in astrocytic morphology, impaired conductivity via Kir4.1 channels and low coupling ratio in astrocytic networks in the motor cortex, which affected their ability to form the K+ gradient needed to disperse K+ through the astrocytic syncytium. These findings indicate that the supportive function astrocytes typically provide to motoneurons is diminished during disease progression and provides a potential explanation for the increased vulnerability of motoneurons in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Astrocitos , Superóxido Dismutasa-1 , Neuronas Motoras/fisiología , Médula Espinal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Superóxido Dismutasa
2.
Neurochem Res ; 48(4): 1091-1099, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36244037

RESUMEN

Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.


Asunto(s)
Astrocitos , Epilepsia , Humanos , Astrocitos/fisiología , Encéfalo , Transmisión Sináptica , Ácido Glutámico
3.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802343

RESUMEN

Potassium homeostasis is fundamental for brain function. Therefore, effective removal of excessive K+ from the synaptic cleft during neuronal activity is paramount. Astrocytes play a key role in K+ clearance from the extracellular milieu using various mechanisms, including uptake via Kir channels and the Na+-K+ ATPase, and spatial buffering through the astrocytic gap-junction coupled network. Recently we showed that alterations in the concentrations of extracellular potassium ([K+]o) or impairments of the astrocytic clearance mechanism affect the resonance and oscillatory behavior of both the individual and networks of neurons. These results indicate that astrocytes have the potential to modulate neuronal network activity, however, the cellular effectors that may affect the astrocytic K+ clearance process are still unknown. In this study, we have investigated the impact of neuromodulators, which are known to mediate changes in network oscillatory behavior, on the astrocytic clearance process. Our results suggest that while some neuromodulators (5-HT; NA) might affect astrocytic spatial buffering via gap-junctions, others (DA; Histamine) primarily affect the uptake mechanism via Kir channels. These results suggest that neuromodulators can affect network oscillatory activity through parallel activation of both neurons and astrocytes, establishing a synergistic mechanism to maximize the synchronous network activity.


Asunto(s)
Astrocitos/metabolismo , Neurotransmisores/metabolismo , Potasio/metabolismo , Animales , Uniones Comunicantes/metabolismo , Homeostasis/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
Front Cell Neurosci ; 14: 278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973460

RESUMEN

Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.

5.
Glia ; 68(11): 2192-2211, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32181522

RESUMEN

Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.


Asunto(s)
Espacio Extracelular , Espacio Extracelular/metabolismo , Neuroglía/metabolismo , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
J Neurosci Res ; 98(5): 964-977, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32067254

RESUMEN

Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.


Asunto(s)
Acetilcolina/farmacología , Astrocitos/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Norepinefrina/farmacología , Potasio/metabolismo , Serotonina/farmacología , Corteza Somatosensorial/efectos de los fármacos , Animales , Astrocitos/metabolismo , Glucólisis/fisiología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Corteza Somatosensorial/metabolismo
7.
Front Neurosci ; 13: 1125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680846

RESUMEN

Synchronization of neuronal activity in the brain underlies the emergence of neuronal oscillations termed "brain waves", which serve various physiological functions and correlate with different behavioral states. It has been postulated that at least ten distinct mechanisms are involved in the formulation of these brain waves, including variations in the concentration of extracellular neurotransmitters and ions, as well as changes in cellular excitability. In this mini review we highlight the contribution of astrocytes, a subtype of glia, in the formation and modulation of brain waves mainly due to their close association with synapses that allows their bidirectional interaction with neurons, and their syncytium-like activity via gap junctions that facilitate communication to distal brain regions through Ca2+ waves. These capabilities allow astrocytes to regulate neuronal excitability via glutamate uptake, gliotransmission and tight control of the extracellular K+ levels via a process termed K+ clearance. Spatio-temporal synchrony of activity across neuronal and astrocytic networks, both locally and distributed across cortical regions, underpins brain states and thereby behavioral states, and it is becoming apparent that astrocytes play an important role in the development and maintenance of neural activity underlying these complex behavioral states.

8.
Neurosci Biobehav Rev ; 77: 87-97, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28279812

RESUMEN

The human brain contains two major cell populations, neurons and glia. While neurons are electrically excitable and capable of discharging short voltage pulses known as action potentials, glial cells are not. However, astrocytes, the prevailing subtype of glia in the cortex, are highly connected and can modulate the excitability of neurons by changing the concentration of potassium ions in the extracellular environment, a process called K+ clearance. During the past decade, astrocytes have been the focus of much research, mainly due to their close association with synapses and their modulatory impact on neuronal activity. It has been shown that astrocytes play an essential role in normal brain function including: nitrosative regulation of synaptic release in the neocortex, synaptogenesis, synaptic transmission and plasticity. Here, we discuss the role of astrocytes in network modulation through their K+ clearance capabilities, a theory that was first raised 50 years ago by Orkand and Kuffler. We will discuss the functional alterations in astrocytic activity that leads to aberrant modulation of network oscillations and synchronous activity.


Asunto(s)
Astrocitos , Potasio/metabolismo , Humanos , Neuroglía , Sinapsis , Transmisión Sináptica
9.
J Physiol Sci ; 66(2): 127-42, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26507417

RESUMEN

In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/fisiología , Potasio/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Tamaño de la Célula , Cinética , Potenciales de la Membrana/fisiología , Modelos Biológicos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Simportadores/metabolismo , Cotransportadores de K Cl
10.
Channels (Austin) ; 8(6): 544-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483287

RESUMEN

Neuronal activity results in release of K(+) into the extracellular space of the central nervous system. If the excess K(+) is allowed to accumulate, neuronal firing will be compromised by the ensuing neuronal membrane depolarization. The surrounding glial cells are involved in clearing K(+) from the extracellular space by molecular mechanism(s), the identity of which have been a matter of controversy for over half a century. Kir4.1-mediated spatial buffering of K(+) has been promoted as a major contributor to K(+) removal although its quantitative and temporal contribution has remained undefined. We discuss the biophysical and experimental challenges regarding determination of the contribution of Kir4.1 to extracellular K(+) management during neuronal activity. It is concluded that 1) the geometry of the experimental preparation is crucial for detection of Kir4.1-mediated spatial buffering and 2) Kir4.1 enacts spatial buffering of K(+) during but not after neuronal activity.


Asunto(s)
Encéfalo/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Animales , Humanos , Transporte Iónico , Potenciales de la Membrana , Neuroglía/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
11.
Front Pharmacol ; 3: 53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470344

RESUMEN

Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for 3 weeks (6 h/day). In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current potential shift was shortened after stress. Moreover, K(+) fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K(+) levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K(+) channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance, and K(+)-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K(+) accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K(+) buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.

12.
Cogn Neurodyn ; 5(3): 285-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22942917

RESUMEN

Astrocytes play a critical role in CNS metabolism, regulation of volume and ion homeostasis of the interstitial space. Of special relevance is their clearance of K(+) that is released by active neurons into the extracellular space. Mathematical analysis of a modified Nernst equation for the electrochemical equilibrium of neuronal plasma membranes, suggests that K(+) uptake by glial cells is not only relevant during neuronal activity but also has a non-neglectable impact on the basic electrical membrane properties, specifically the resting membrane potential, of neurons and might be clinically valuable as a factor in the genetics and epigenetics of the epilepsy and tuberous sclerosis complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA