Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(4): 5228-5234, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33470108

RESUMEN

5d metals are used in electronics because of their high spin-orbit coupling (SOC) leading to efficient spin-electric conversion. When C60 is grown on a metal, the electronic structure is altered due to hybridization and charge transfer. In this work, we measure the spin Hall magnetoresistance for Pt/C60 and Ta/C60, finding that they are up to a factor of 6 higher than those for pristine metals, indicating a 20-60% increase in the spin Hall angle. At low fields of 1-30 mT, the presence of C60 increased the anisotropic magnetoresistance by up to 700%. Our measurements are supported by noncollinear density functional theory calculations, which predict a significant SOC enhancement by C60 that penetrates through the Pt layer, concomitant with trends in the magnetic moment of transport electrons acquired via SOC and symmetry breaking. The charge transfer and hybridization between the metal and C60 can be controlled by gating, so our results indicate the possibility of dynamically modifying the SOC of thin metals using molecular layers. This could be exploited in spin-transfer torque memories and pure spin current circuits.

2.
ACS Appl Mater Interfaces ; 12(47): 53409-53415, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33198456

RESUMEN

Bi2Se3 is a well-established topological insulator (TI) having spin momentum locked Dirac surface states at room temperature and predicted to exhibit high spin to charge conversion efficiency (SCCE) for spintronics applications. The SCCE in TIs is characterized by an inverse Edelstein effect length (λIREE). We report an λIREE of ∼0.36 nm, which is the highest ever observed in Bi2Se3. Here, we performed spin pumping and inverse spin Hall effect (ISHE) in an electron beam-evaporated Bi2Se3/CoFeB bilayer. The Bi2Se3 thickness dependence of λIREE, perpendicular surface anisotropy (KS), spin mixing conductance, and spin Hall angle confirmed that spin to charge conversion is due to spin momentum locked Dirac surface states. We propose that the role of surface states in SCCE can be understood by the evaluation of KS. The SCCE is found to be high when the value of KS is small.

3.
ACS Appl Mater Interfaces ; 12(29): 32898-32904, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32608235

RESUMEN

We report the giant spin current generation in CuTb alloys arising from the spin Hall effect. The maximum spin Hall angle from our CuTb-based magnetic heterostructures was found to be -0.35 ± 0.02 for Cu0.39Tb0.61. We find that the contribution of skew scattering is larger than the side jump for lower Tb concentrations (<14.9%), while the converse is true for higher Tb concentrations. Additionally, we also studied the Gilbert damping parameter, spin diffusion length, and spin-mixing conductance. Interfacial spin transparency was found to be 0.55 ± 0.03 for the CoFeB/Cu0.53Tb0.47 interface. The spin diffusion length and spin-mixing conductance of the Cu0.53Tb0.47 alloy are λsd = 2.5 ± 0.3 nm and G↓↑ = (24.2 ± 1.0) × 1015 cm-2, respectively. Our results pave a way for rare-earth metals to be used as a spin Hall material in highly efficient SOT devices.

4.
Sci Adv ; 2(9): e1600759, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27704044

RESUMEN

There has been considerable interest in spin-orbit torques for the purpose of manipulating the magnetization of ferromagnetic elements for spintronic technologies. Spin-orbit torques are derived from spin currents created from charge currents in materials with significant spin-orbit coupling that propagate into an adjacent ferromagnetic material. A key challenge is to identify materials that exhibit large spin Hall angles, that is, efficient charge-to-spin current conversion. Using spin torque ferromagnetic resonance, we report the observation of a giant spin Hall angle [Formula: see text] of up to ~0.35 in (001)-oriented single-crystalline antiferromagnetic IrMn3 thin films, coupled to ferromagnetic permalloy layers, and a [Formula: see text] that is about three times smaller in (111)-oriented films. For (001)-oriented samples, we show that the magnitude of [Formula: see text] can be significantly changed by manipulating the populations of various antiferromagnetic domains through perpendicular field annealing. We identify two distinct mechanisms that contribute to [Formula: see text]: the first mechanism, which is facet-independent, arises from conventional bulk spin-dependent scattering within the IrMn3 layer, and the second intrinsic mechanism is derived from the unconventional antiferromagnetic structure of IrMn3. Using ab initio calculations, we show that the triangular magnetic structure of IrMn3 gives rise to a substantial intrinsic spin Hall conductivity that is much larger for the (001) than for the (111) orientation, consistent with our experimental findings.


Asunto(s)
Conductividad Eléctrica , Magnetismo , Imanes/química , Campos Magnéticos , Órbita , Física , Propiedades de Superficie , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA