Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
PhytoKeys ; 246: 179-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257485

RESUMEN

Salviapenghuana, a new species from Guizhou Province of southwestern China, is described and illustrated. Morphologically, Salviapenghuana is similar to S.filicifolia, but can be easily distinguished from the latter by ovate-lanceolate bracts, purple corolla, and foot-shaped fused lower arms of connective. In addition, S.penhuana is morphologically similar to S.cavaleriei, but differs by having 3-4-pinnate leave, ovate-lanceolate bracts, puberulent calyx, and longer upper arms of connective. Based on the fibril root, small calyx and corolla, and completely reduced posterior thecae, S.penghuana should be placed in section Sobiso of subg. Glutinaria.

2.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063121

RESUMEN

The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts.


Asunto(s)
Flores , Juglans , Proteínas de Plantas , Proteómica , Juglans/metabolismo , Juglans/crecimiento & desarrollo , Juglans/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Regulación de la Expresión Génica de las Plantas , Proteoma/metabolismo
3.
Gene ; 927: 148749, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969247

RESUMEN

We examined whether plant-type phosphoenolpyruvate carboxylase (PEPC) is involved in flower organ formation or not by over-expression in Arabidopsis. A wheat PEPC isogene Tappc3A, belonging to the ppc3 group, was targeted due to its preferential expression pattern in pistils and stamens. Transgenic Arabidopsis over-expressing Tappc3A exhibited irregular stamen formation, i.e., a lesser number of stamens per flower and shorter filaments in T2 and T3 generations. Irregular stamens were frequently observed in homozygous T4 lines, but no morphological change was observed in other floral organs. High-degree gene co-expression of Tappc3 isogenes with wheat SEEDSTICKs but not with other homeotic transcription factor genes for flower formation implicates that Tappc3 is under control by the class D genes of the ABCDE model to flower development. In addition, the conservation of CArG box sequences on the Tappc3 promoters supported the developmentally programmed gene expression of ppc3 in wheat flowering organs. Thus, this study provides the first experimental evidence for the critical regulation of plant-type PEPC for flower formation.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Fosfoenolpiruvato Carboxilasa , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Triticum/genética , Triticum/crecimiento & desarrollo , Regiones Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915635

RESUMEN

Traits that have lost function sometimes persist through evolutionary time. These traits may be maintained by a lack of standing genetic variation for the trait, if selection against the trait is weak relative to drift, or if they have a residual function. To determine the evolutionary processes shaping whether nonfunctional traits are retained or lost, we investigated short stamens in 16 populations of Arabidopsis thaliana along an elevational cline in the Spanish Pyrenees. We found a cline in short stamen number from retention of short stamens in high elevation populations to incomplete loss in low elevation populations. We did not find evidence that limited genetic variation constrains the loss of short stamens at high elevations nor evidence for divergent selection on short stamens between high and low elevations. Finally, we identified loci associated with short stamens in the Spanish Pyrenees that are different from loci associated with variation in short stamen number across latitudes from a previous study. Overall, we did not identify the evolutionary mechanisms maintaining an elevational cline in short stamen number but did identify different genetic loci underlying the variation in short stamen along similar phenotypic clines.

5.
BMC Plant Biol ; 24(1): 551, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877392

RESUMEN

Alcea rosea L. is a traditional flower with a long cultivation history. It is extensively cultivated in China and is widely planted in green belt parks or used as cut flowers and potted ornamental because of its rich colors and flower shapes. Double-petal A. rosea flowers have a higher aesthetic value compared to single-petal flowers, a phenomenon determined by stamen petaloid. However, the underlying molecular mechanism of this phenomenon is still very unclear. In this study, an RNA-based comparative transcriptomic analysis was performed between the normal petal and stamen petaloid petal of A. rosea. A total of 3,212 differential expressed genes (DEGs), including 2,620 up-regulated DEGs and 592 down-regulated DEGs, were identified from 206,188 unigenes. Numerous DEGs associated with stamen petaloid were identified through GO and KEGG enrichment analysis. Notably, there were 63 DEGs involved in the plant hormone synthesis and signal transduction, including auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinosteroid, jasmonic acid, and salicylic acid signaling pathway and 56 key transcription factors (TFs), such as MADS-box, bHLH, GRAS, and HSF. The identification of these DEGs provides an important clue for studying the regulation pathway and mechanism of stamen petaloid formation in A. rosea and provides valuable information for molecular plant breeding.


Asunto(s)
Flores , Perfilación de la Expresión Génica , Flores/genética , Flores/crecimiento & desarrollo , Flores/anatomía & histología , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Mov Ecol ; 12(1): 43, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851751

RESUMEN

BACKGROUND: Successive stamen movement is a complex plant behavior involving successive uplift of stamens and pollen release, which plays a role in reducing sexual interference, increasing pollen deposition and promoting pollen export. Although reported from several taxa, studies on whether the movement can be influenced by abiotic and biotic factors are scarce. METHODS: In this study, we here for the first time described a pattern of successive stamen movement in Saxifraga candelabrum (Saxifragaceae). We then compared the rates of stamen movement in S. candelabrum under different weather and varying pollinator visits. Pollen packaging and presentation schedule of S. candelabrum were also investigated. RESULTS: The results showed that the number of stamens bent per day in sunny days was significantly higher than overcast and rain. Flowers that receive more pollinator visits (control treatment) had significantly higher number of stamen movement than those that received fewer (removal treatment) and none (bagging treatment). Throughout the staminate phase of a flower, there was a progressive increase in both pollen quantity of individual stamens and pollen presentation during each day. CONCLUSION: Our research demonstrates that successive stamen movement in S. candelabrum was accelerated by favorable weather and increased pollinator visits, which may promote pollen export. Moreover, incremental pollen packaging is likely an adaptation to seasonal regularity in variations of sex ratio resulting from protandry.

7.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928464

RESUMEN

Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Giberelinas , Histona Acetiltransferasas , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Acetilación , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Histonas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
8.
Ann Bot ; 134(2): 295-310, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38733329

RESUMEN

BACKGROUND AND AIMS: The California Floristic Province (CA-FP) is the most species-rich region of North America north of Mexico. One of several proposed hypotheses explaining the exceptional diversity of the region is that the CA-FP harbours myriad recently diverged lineages with nascent reproductive barriers. Salvia subgenus Audibertia is a conspicuous element of the CA-FP, with multiple sympatric and compatible species. METHODS: Using 305 nuclear loci and both organellar genomes, we reconstruct species trees, examine genomic discordance, conduct divergence-time estimation, and analyse contemporaneous patterns of gene flow and mechanical reproductive isolation. KEY RESULTS: Despite strong genomic discordance, an underlying bifurcating tree is supported. Organellar genomes capture additional introgression events not detected in the nuclear genome. Most interfertility is found within clades, indicating that reproductive barriers arise with increasing genetic divergence. Species are generally not mechanically isolated, suggesting that it is unlikely to be the primary factor leading to reproductive isolation. CONCLUSIONS: Rapid, recent speciation with some interspecific gene flow in conjunction with the onset of a Mediterranean-like climate is the underlying cause of extant diversity in Salvia subgenus Audibertia. Speciation has largely not been facilitated by gene flow. Its signal in the nuclear genome seems to mostly be erased by backcrossing, but organellar genomes each capture different instances of historical gene flow, probably characteristic of many CA-FP lineages. Mechanical reproductive isolation appears to be only part of a mosaic of factors limiting gene flow.


Asunto(s)
Flujo Génico , Especiación Genética , Filogenia , Aislamiento Reproductivo , Salvia , California , Salvia/genética , Biodiversidad , Genoma de Planta , Variación Genética
9.
J Plant Physiol ; 297: 154236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621330

RESUMEN

Germline cells are critical for transmitting genetic information to subsequent generations in biological organisms. While their differentiation from somatic cells during embryonic development is well-documented in most animals, the regulatory mechanisms initiating plant germline cells are not well understood. To thoroughly investigate the complex morphological transformations of their ultrastructure over developmental time, nanoscale 3D reconstruction of entire plant tissues is necessary, achievable exclusively through electron microscopy imaging. This paper presents a full-process framework designed for reconstructing large-volume plant tissue from serial electron microscopy images. The framework ensures end-to-end direct output of reconstruction results, including topological networks and morphological analysis. The proposed 3D cell alignment, denoise, and instance segmentation pipeline (3DCADS) leverages deep learning to provide a cell instance segmentation workflow for electron microscopy image series, ensuring accurate and robust 3D cell reconstructions with high computational efficiency. The pipeline involves five stages: the registration of electron microscopy serial images; image enhancement and denoising; semantic segmentation using a Transformer-based neural network; instance segmentation through a supervoxel-based clustering algorithm; and an automated analysis and statistical assessment of the reconstruction results, with the mapping of topological connections. The 3DCADS model's precision was validated on a plant tissue ground-truth dataset, outperforming traditional baseline models and deep learning baselines in overall accuracy. The framework was applied to the reconstruction of early meiosis stages in the anthers of Arabidopsis thaliana, resulting in a topological connectivity network and analysis of morphological parameters and characteristics of cell distribution. The experiment underscores the 3DCADS model's potential for biological tissue identification and its significance in quantitative analysis of plant cell development, crucial for examining samples across different genetic phenotypes and mutations in plant development. Additionally, the paper discusses the regulatory mechanisms of Arabidopsis thaliana's germline cells and the development of stamen cells before meiosis, offering new insights into the transition from somatic to germline cell fate in plants.


Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Arabidopsis/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Algoritmos , Células Vegetales/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos
10.
Plant Biol (Stuttg) ; 26(3): 349-368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407440

RESUMEN

Floral colours represent a highly diverse communication signal mainly involved in flower visitors' attraction and guidance, but also flower discrimination, filtering non-pollinators and discouraging floral antagonists. The divergent visual systems and colour preferences of flower visitors, as well as the necessity of cues for flower detection and discrimination, foster the diversity of floral colours and colour patterns. Despite the bewildering diversity of floral colour patterns, a recurrent component is a yellow UV-absorbing floral centre, and it is still not clear why this pattern is so frequent in angiosperms. The pollen, anther, stamen, and androecium mimicry (PASAM) hypothesis suggests that the system composed of the flowers possessing such yellow UV-absorbing floral reproductive structures, the flowers displaying central yellow UV-absorbing structures as floral guides, and the pollen-collecting, as well as pollen-eating, flower visitors responding to such signals constitute the world's most speciose mimicry system. In this review, we call the attention of researchers to some hypothetical PASAM systems around the globe, presenting some fascinating examples that illustrate their huge diversity. We will also present new and published data on pollen-eating and pollen-collecting pollinators' responses to PASAM structures supporting the PASAM hypothesis and will discuss how widespread these systems are around the globe. Ultimately, our goal is to promote the idea that PASAM is a plausible first approach to understanding floral colour patterns in angiosperms.


Asunto(s)
Magnoliopsida , Polinización , Polinización/fisiología , Reproducción , Flores/fisiología , Polen/fisiología , Magnoliopsida/fisiología
11.
Plant Reprod ; 37(2): 215-227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183442

RESUMEN

KEY MESSAGE: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Gossypium , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Reproducción/genética , Transcriptoma , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología
12.
Plant Sci ; 340: 111974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199385

RESUMEN

The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.


Asunto(s)
Arabidopsis , Isatis , Isatis/genética , Isatis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores , Arabidopsis/metabolismo , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Filogenia
13.
BMC Plant Biol ; 24(1): 22, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166716

RESUMEN

BACKGROUND: Floral patterns are crucial for insect pollination and plant reproduction. Generally, once these patterns are established, they exhibit minimal changes under natural circumstances. However, the Clematis cultivar' Vyvyan Pennell', the apetalous lineage in the Ranunculaceae family, produces two distinct types of flowers during different seasons. The regulatory mechanism responsible for this phenomenon remains largely unknown. In this study, we aim to shed light on this floral development with shifting seasonal patterns by conducting extensive morphological, transcriptomic, and hormone metabolic analyses. Our findings are anticipated to contribute valuable insights into the diversity of flowers in the Ranunculaceae family. RESULTS: The morphological analysis revealed that the presence of extra petaloid structures in the spring double perianth was a result of the transformation of stamens covered with trichomes during the 5th developmental stage. A de novo reference transcriptome was constructed by comparing buds and organs within double and single perianth from both seasons. A total of 209,056 unigenes were assembled, and 5826 genes were successfully annotated in all six databases. Among the 69,888 differentially expressed genes from the comparative analysis, 48 genes of utmost significance were identified. These critical genes are associated with various aspects of floral development. Interestingly, the A-, B-, and C-class genes exhibited a wider range of expression and were distinct within two seasons. The determination of floral organ identity was attributed to the collaborative functioning of all the three classes genes, aligning with a modified "fading border model". The phytohormones GA3, salicylic acid, and trans-zeatin riboside may affect the formation of the spring double perianth, whereas GA7 and abscisic acid may affect single flowers in autumn. CONCLUSIONS: We presumed that the varying temperatures between the two seasons served as the primary factor in the alteration of floral patterns, potentially affecting the levels of plant hormones and expressions of organ identity genes. However, a more thorough investigation is necessary to fully comprehend the entire regulatory network. Nonetheless, our study provides some valuable informations for understanding the underlying mechanism of floral pattern alterations in Clematis.


Asunto(s)
Clematis , Estaciones del Año , Clematis/genética , Clematis/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Flores , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Cell Surf ; 10: 100117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38076635

RESUMEN

Arabinogalactan-proteins (AGPs) are a family of hyperglycosylated hydroxyproline-rich cell wall proteins found throughout the plant kingdom. To date, eight Hydroxyproline-galactosyltransferases (Hyp-GALTs), named GALT2-GALT9, are known to catalyze the addition of the first galactose sugar to Hyp residues in AGP protein cores. The generation and characterization of galt23456789 octuple mutants using CRISPR-Cas9 gene editing technology, provided strong reverse genetic evidence that AG glycans are essential for normal vegetative and reproductive growth, as these mutants demonstrated stunted growth, greatly delayed flowering and significant defects in floral organ development and morphogenesis. Compared to the lower seed set of galt25789 quintuple mutants being more so contributed by female gametophytic defects, dramatically low seed-set of octuple mutants was largely due to impaired male reproductive function, specifically due to shorter filaments, delayed anther dehiscence, and large decreases in pollen quantity and viability. Octuple mutant pollen had severely distorted reticulate exine, tectum patterning and intine thickness. Reduced amounts of galactose and arabinose in overall lower amounts of ß-Yariv precipitated AGPs illustrated how biological functions of AGPs are affected by abnormal glycosylation.

15.
Physiol Mol Biol Plants ; 29(10): 1437-1456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38076769

RESUMEN

Unravelling genetic networks regulating developmental programs are key to devising and implementing genomics assisted trait modification strategies. It is crucial to understand the role of small RNAs, and the basis of their ability to modify traits. MIR159 has been previously reported to cause defects in anther development in Arabidopsis; however, the complete spectrum and basis of the defects remained unclear. The present study was therefore undertaken to comprehensively investigate the role of miR159 from Brassica juncea in modulating vegetative and reproductive traits. Owing to the polyploid nature of Brassica, paralogous and homeologous copies of MIR159A, MIR159B, and, MIR159C were identified and analysis of the precursor uncovered extensive structural and sequence variation. The MIR159 locus with mature miR159 with perfect target complimentarily with MYB65, was cloned from Brassica juncea var. Varuna for functional characterization by generating constitutively over-expressing lines in Arabidopsis thaliana Col-0. Apart from statistically significant difference in multiple vegetative traits, drastic differences were observed in stamen and pistil. Over-expression of miR159a led to shortening of filament length and loss of tetradynamous condition. Anthers were apiculate, with improper lobe formation, and unsynchronized cellular growth between connective tissue and another lobe development. Analysis revealed arrested meiosis/cytokinesis in microspores, and altered lignin deposition pattern in endothecial walls thus affecting anther dehiscence. In the gynoecium, flaccid, dry stigmatic papillae, and large embryo sac in the female gametophyte was observed. Over-expression of miR159a thus severely affected pollination and seed-set. Analysis of the transcriptome data revealed components of regulatory networks of anther and carpel developmental pathway, and lignin metabolism that are affected. Expression analysis allowed us to position the miR159a-MYB65 module in the genetic network of stamen development, involved in pollen-grain maturation; in GA-mediated regulation of stamen development, and in lignin metabolism. The study, on one hand indicates role of miR159a-MYB65 in regulating multiple aspects of reproductive organ development that can be manipulated for trait modification, but also raises several unaddressed questions such as relationship between miR159a and male-meiosis, miR159a and filament elongation for future investigations. Accession numbers: KC204951-KC204960. Project number PRJNA1035268. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01377-7.

17.
Am J Bot ; 110(8): e16209, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401171

RESUMEN

PREMISE: Male and female reproductive success is enhanced (increased outcrossing and seed production, respectively) by stamen movement in species that have few stamens per flower. Does such enhancement also occur in species that have many stamens per flower? METHODS: We examined the effects of stamen movement on male and female reproductive success in Anemone flaccida, which has many stamens per flower. We measured stamen movement, including temporal changes in anther-stigma and anther-anther distances. We experimentally fixed stamens in their pre- or post-movement positions. RESULTS: The anthers moved horizontally away from the stigmas with increasing flower age, thus reducing female-male interference. The dehisced anthers tended to move farther from the stigmas, while the undehisced or dehiscing anthers remained closer to them. The number of anthers touched per flower visit was higher in flowers whose stamens were fixed in the pre-movement position than in flowers whose stamens were fixed in the post-movement position or in flowers that were not manipulated. Thus, this position may promote male reproductive success. Seed production was lower for the untreated flowers than for those with stamens fixed in the post-movement position, suggesting that the post-movement stamen position is advantageous and stamen movement is suboptimal for female reproductive success. CONCLUSIONS: Stamen movement promotes male reproductive success in the early flowering stage and female reproductive success in the late flowering stage. In species having many stamens per flower, female-male interference can be reduced, but not eliminated, by stamen movement due to the conflict between female and male reproductive successes.


Asunto(s)
Flores , Reproducción
18.
Plant Direct ; 7(5): e496, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37168319

RESUMEN

Plants generate their reproductive organs, the stamens and the carpels, de novo within the flowers that form when the plant reaches maturity. The carpels comprise the female reproductive organ, the gynoecium, a complex organ that develops along several axes of polarity and is crucial for plant reproduction, fruit formation, and seed dispersal. The epigenetic trithorax group (trxG) protein ULTRAPETALA1 (ULT1) and the GARP domain transcription factor KANADI1 (KAN1) act cooperatively to regulate Arabidopsis thaliana gynoecium patterning along the apical-basal polarity axis; however, the molecular pathways through which this patterning activity is achieved remain to be explored. In this study, we used transcriptomics to identify genome-wide ULT1 and KAN1 target genes during reproductive development. We discovered 278 genes in developing flowers that are regulated by ULT1, KAN1, or both factors together. Genes involved in developmental and reproductive processes are overrepresented among ULT1 and/or KAN1 target genes, along with genes involved in biotic or abiotic stress responses. Consistent with their function in regulating gynoecium patterning, a number of the downstream target genes are expressed in the developing gynoecium, including a unique subset restricted to the stigmatic tissue. Further, we also uncovered a number of KAN1- and ULT1-induced genes that are transcribed predominantly or exclusively in developing stamens. These findings reveal a potential cooperative role for ULT1 and KAN1 in male as well as female reproductive development that can be investigated with future genetic and molecular experiments.

19.
Plant Sci ; 333: 111734, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207819

RESUMEN

The stamen, as the male reproductive organ of flowering plants, plays a critical role in completing the life cycle of plants. MYC transcription factors are members of the bHLH IIIE subgroup and participate in a number of plant biological processes. In recent decades, a number of studies have confirmed that MYC transcription factors actively participate in the regulation of stamen development and have a critical impact on plant fertility. In this review, we summarized how MYC transcription factors play a role in regulating secondary thickening of the anther endothecium, the development and degradation of the tapetum, stomatal differentiation, and the dehydration of the anther epidermis. With regard to anther physiological metabolism, MYC transcription factors control dehydrin synthesis, ion and water transport, and carbohydrate metabolism to influence pollen viability. Additionally, MYCs participate in the JA signal transduction pathway, where they directly or indirectly control the development of stamens through the ET-JA, GA-JA, and ABA-JA pathways. By identifying the functions of MYCs during plant stamen development, it will help us to obtain a more comprehensive understanding not only on the molecular functions of this TF family but also the mechanisms underlying stamen development.


Asunto(s)
Flores , Plantas , Proteínas Proto-Oncogénicas c-myc , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Polen , Factores de Transcripción/metabolismo
20.
Plants (Basel) ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050065

RESUMEN

Sacred lotus (Nelumbo nucifera) is a commercial product in Asian countries. Almost all parts of the lotus plant are consumed as food or used as traditional medicine due to their high contents of secondary metabolites such as phenolics and alkaloids. However, agricultural management of the sacred lotus occurs during the rainy season, and the plant enters a resting stage during the dry season. Thus, seasonal variation (beginning, middle and end of the rainy season) was investigated for total phenolic contents (TPCs), antioxidant capacities and inhibitions of the key enzymes relevant to chronic diseases including Alzheimer's disease (ß-secretase, acetylcholinesterase and butyrylcholinesterase), hypertension (angiotensin-converting enzyme), obesity (lipase) and diabetes (α-glucosidase) of different sacred lotus parts (seed embryo, petal, stamen, old leaf, leaf stalk and flower stalk). Results indicated that an aqueous extract of stamen in all harvesting seasons exhibited potentially high TPCs, which led to high antioxidant activities and most enzyme inhibitions (up to 53.7-fold higher) than the others collected in the same harvesting period. The phenolic content and biochemical activities in stamen harvested at the beginning of the rainy season were up to 4-fold higher than during other harvesting periods. This information benefits the agricultural management of sacred lotus and supports consumption of different sacred lotus parts for health promotion. Results can be used as an initial database for future product development from different sacred lotus parts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA