Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 4): 135523, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260649

RESUMEN

The developmental changes in the granular surface structure and functional properties of starch during the entire grain filling period of rice (around 40 days) were investigated. The specific surface area of rice starch significantly decreased firstly then stabilized during growth due to increasing granular size. The pore volume decreased from 5.40 cm3/g at 6th day after anthesis (DAA-6) to 3.02 cm3/g (DAA-46). More starch granule-associated proteins (SGAPs) accumulated on the surface and in channels. Swelling power decreased by 46 %, whereas the flow behavior index (n) decreased by 32 % in upward curve during starch development from DAA-6 to DAA-30. Tan δ first dropped then remained steady at DAA 22-34 and lightly rebounded at the final stage, indicating that starch in the middle stage tended to have greater viscoelastic gel behavior at all sweeps. Mature starch showed lower in vitro hydrolysis rate and exhibited stronger enzymatic resistance. The results showed that granular surface features of rice starch may be an essential factor in determining rheological behavior and resistance to hydrolysis.

2.
Foods ; 13(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39272438

RESUMEN

Weizmannia coagulans is increasingly employed in food processing owing to its health benefits. Our previous research developed Oolong tea-fortified rice noodles with unique flavor and potent antioxidant activity; however, their texture still requires improvement. In this study, Oolong tea-fortified rice noodles were fermented using W. coagulans PR06 at inoculation amounts of 1%, 3%, and 5% (v/v), and assessed for cooking quality, texture, and starch digestibility. The results indicated that fermentation with 3% and 5% W. coagulans PR06 altered the amylopectin length distribution in the rice noodles and increased the degree of starch short-range order. Furthermore, the fermentation process increased the storage modulus (G') and loss modulus (G″) values, decreased the tan δ value, and strengthened the interactions among tea polyphenols, proteins, and starch in the rice flour gel. Consequently, this process increased the hardness and chewiness of the rice noodles, decreased their broken strip rate and cooking loss, and significantly reduced their in vitro starch digestibility. Overall, fermentation with W. coagulans PR06 markedly improved the texture and cooking quality of Oolong tea-fortified rice noodles while effectively delaying starch digestion. This study highlights the potential application of W. coagulans PR06 in developing diverse and functional rice noodle products.

3.
Foods ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39272490

RESUMEN

Heat-moisture treatment (HMT) is a widely used method for modifying starch properties with the potential to reduce the digestibility of high-amylose starch (HAS). This study aimed to optimize the HMT conditions for HAS and apply the resulting HMT-HAS to triticale noodles to develop low-glycemic-index products. HMT significantly increased the resistant starch (RS) content and decreased the rapidly digestible starch (RDS) content of HAS. The treatment conditions-temperature, heating time, and moisture content-were found to significantly influence the starch composition. Optimal HMT conditions were determined using response surface methodology: a temperature of 108 °C, a heating time of 5.8 h, and a moisture content of 25.50%. Under these conditions, the RS content of HMT-HAS was 60.23%, nearly double that of the untreated sample. Increasing the level of HMT-HAS in triticale noodles led to significant decreases in short-range order, relative crystallinity, and viscosities, while the RS content increased from 12.08% to 34.41%. These findings suggest that incorporating HMT-HAS into triticale noodles effectively enhances starch digestive resistance, supporting the development of functional, low-glycemic-index triticale-based foods.

4.
J Agric Food Chem ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344594

RESUMEN

Previous studies have shown that fermented barley has a lower digestion rate. However, it remains unclear whether the antidigestibility of starch in fermented barley is affected by other nonstarch components. In this paper, the removal of protein, lipid, and ß-glucan improved the hydrolysis rate of starch and the protein showed the greatest effect. Subsequently, the inhibitory mechanism of protein on starch digestion was elucidated from the perspective of starch physicochemical properties and structural changes. The removal of protein increased the swelling power of starch from 10.09 to 11.14%. The short-range molecular ordered structure and the helical structure content decreased. The removal of protein reduced the coating and particle size of the starch particles, making the Maltese cross more dispersed. In summary, protein in fermented barley enhanced the ordered structure of starch by forming a physical barrier around starch and prevented the expansion of starch, which inhibited the hydrolysis of starch.

5.
Food Res Int ; 194: 114869, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232508

RESUMEN

Genistein could interact with starch to slow starch digestion by forming starch-genistein complexes. However, genistein had low solubility in water, which hindered the interaction with starch and therefore the formation of the complexes. This study presented a pathway to promote the formation of starch-genistein complexes using an antisolvent method in two steps: (i) adding ethanol to the solution containing starch and genistein to increase genistein solubility, and (ii) evaporating ethanol from the solution to promote genistein interaction with starch. The complexes prepared using this antisolvent method had higher crystallinity (9.45 %), complex index (18.17 %), and higher content of resistant starch (RS) (19.04 %) compared to samples prepared in pure water or ethanol-containing aqueous solution without ethanol evaporation treatment (these samples showed crystallinity of 6.97 %-8.00 %, complex index of 9.09 %-11.4 2%, and RS of 4.45 %-14.38 %). Molecular dynamic simulation results confirmed that the changes in solution polarity significantly determined the formation of starch-genistein complexes. Findings offered a feasible pathway to efficiently promote starch interaction with genistein and in turn mitigate starch digestibility.


Asunto(s)
Digestión , Genisteína , Solubilidad , Almidón , Almidón/química , Genisteína/química , Etanol/química , Solventes/química , Simulación de Dinámica Molecular
6.
J Food Sci Technol ; 61(10): 1848-1861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39285993

RESUMEN

The incidence of pre-diabetes and diabetes has been increasing recently worldwide and considered as a major growing non-communicable disease. Millets are eco-friendly crops which could sustain extensive climatic conditions. The productivity of millets had increased in recent years to meet the nutritional needs of the increasing global population. The factors which affect the starch digestibility pattern in millets are protein, fat, resistant starch, dietary fibre, and anti-nutrients. However, the interplay of these components also affects the starch digestibility pattern in millets during various processing methods such as thermal, non-thermal, chemical, and their combination. The incorporation of native and processed millet in food products varies the in-vitro and in-vivo glycaemic index. The current study further discusses the potential applications of millet in food formulations for pre-diabetic and diabetic population. Hence the appropriately processed millets could be a suggested as a suitable dietary option for pre-diabetic and diabetic population.

7.
Plant Foods Hum Nutr ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292418

RESUMEN

The extrusion process, a vital technique for starch modification, is notably influenced by the moisture content (MC). This study aimed to elucidate the effect of varying MC levels (18, 22, 26, and 30%) on the structural and physicochemical characteristics of cassava flour during extrusion. Extrusion resulted in the fraction of degree of polymerization 13‒24, degree of branching, and molecular weight increased with increasing MC, with values of above indexes being 32.29%, 1.05%, and 1.21 × 105 g/mol, respectively, at a MC of 18%. This suggested that the degradation of amylopectin and amylose. Additionally, there was an increase in rapidly digestible starch (RDS) and a decrease in slowly digestible starch (SDS) in the extrudates in comparison to the native cassava flour. The extrusion of cassava flour at 18% MC exhibited the highest levels of RDS and SDS, reaching 64.52% and 4.06%, respectively. These findings indicated that low moisture extrusion could be a more effective method for disrupting the structure of cassava starch and enhancing the digestibility of cassava flour, offering valuable insights for the optimized use of cassava extrudates in various applications.

8.
Int J Biol Macromol ; 278(Pt 3): 134804, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39154677

RESUMEN

The substitution of margarine with candelilla wax (CW)-based oleogel is currently a prominent focus of research in the bakery industry. However, the use of CW-based oleogel in cookies increased starch digestibility, potentially posing a risk to human health. Thus, the anti-enzymatic mechanism of lipid-amylose complexes was used to evaluate the influence of olive diacylglycerol stearin (ODS) on starch digestibility in CW-based oleogel cookies. The in vitro digestibility analysis demonstrated that the DCW/ODS-35 cookie exhibited a increase of 27.72 % in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cookie formulated with margarine. The in-vivo glycemic index analysis revealed that the DCW/ODS-35 cookie had a medium glycemic index of 68. XRD pattern suggested that the presence of ODS in oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of ODS resulted in the gelatinization enthalpy of DCW-based cookies increased from 389.9 to 3314.9 J/g. The FTIR spectra indicated that the combination of ODS could promote a short-range ordered structure in DCW-based cookies. Overall, these findings demonstrated that the utilization of DCW-based oleogel presented a viable alternative to commercial margarine in the development of CW-based cookies with reduced starch digestibility.


Asunto(s)
Amilosa , Compuestos Orgánicos , Ceras , Ceras/química , Amilosa/química , Amilosa/análisis , Compuestos Orgánicos/química , Almidón/química , Lípidos/química , Digestión , Almidón Resistente
9.
Foods ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123501

RESUMEN

Allulose is a rare sugar that provides <10% of the energy but 70% of the sweetness of sucrose. Allulose has been shown to attenuate glycemic responses to carbohydrate-containing foods in vivo. This study aimed to determine the optimal allulose dose for minimizing in vitro glucose release from rice compared to a rice control and fructose. A triphasic static in vitro digestion method was used to evaluate the in vitro digestion of a rice control compared to the co-digestion of rice with allulose (10 g, 20 g, and 40 g) and fructose (40 g). In vitro glucose release was affected by treatment (p < 0.001), time (p < 0.001), and treatment-by-time interaction (p = 0.002). Allulose (40 g) resulted in a reduction in in vitro glucose release from rice alone and rice digested with allulose (10 g), allulose (20 g), and fructose. The incremental area under the curve (iAUC) for in vitro glucose release was lower after allulose (40 g) (p = 0.005) compared to rice control and allulose (10 g) but did not differ from allulose (20 g) or fructose. This study demonstrates that allulose reduces glucose release from carbohydrates, particularly at higher doses, underscoring its potential as a food ingredient with functional benefits.

10.
Foods ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123518

RESUMEN

Ultrasonic (USC) treatments have been applied to starches, flours and grains to modify their physicochemical properties and improve their industrial applicability. The extent of the modification caused by USC treatment depends on the treatment conditions and the natural characteristics of the treated matter. Cavitation leads to structural damage and fragmentation and partial depolymerization of starch components. The amorphous regions are more susceptible to being disrupted by ultrasonication, while the crystalline regions require extended USC exposure to be affected. The increased surface area in USC-treated samples has a higher interaction with water, resulting in modification of the swelling power, solubility, apparent viscosity, pasting properties and gel rheological and textural properties. Starch digestibility has been reported to be modified by ultrasonication to different extents depending on the power applied. The most important treatment variables leading to more pronounced modifications in USC treatments are the botanical origin of the treated matter, USC power, time, concentration and temperature. The interaction between these factors also has a significant impact on the damage caused by the treatment. The molecular rearrangement and destruction of starch structures occur simultaneously during the USC treatment and the final properties of the modified matrix will depend on the array of treatment parameters. This review summarizes the known effects of ultrasonic treatments in modifying starches, flours and grains.

11.
Foods ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123533

RESUMEN

The purpose of this study was to assess the impact of food texture, oral processing, bolus characteristics, and in vitro digestive conditions on the starch and protein digestibility of al dente and soft-cooked commercial red lentil pasta. For that, samples were cooked as suggested by the provider and their texture properties were promptly analysed. Then, normal and deficient masticated pasta boluses were produced by four healthy subjects, characterised in terms of their oral processing, bolus granulometry, texture and viscoelastic properties, and finally subjected to static in vitro digestion, according to the INFOGEST consensus for both adults and the older adult population. Normal masticated boluses exhibited greater saliva impregnation and lower proportions of large particles, hardness, and stiffness than deficient masticated boluses. Likewise, insufficiently masticated al dente-cooked pasta boluses caused a delay in oral starch digestion owing to the larger particles attained during food oral processing, while reduced intestinal conditions in the elderly only interfere with the release of total soluble proteins in all samples. This work evidences the importance of considering the initial texture of products, oral capabilities, processing behaviour, and physical and mechanical properties of food boluses in digestion studies, opening new prospects in designing pulse-based foods that meet the nutritional requirements of the world's population.

12.
Foods ; 13(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39200516

RESUMEN

The purpose of this study was to substitute shortening with olive diacylglycerol oil/candelilla wax (OCW)-olive diacylglycerol stearin (ODS) oleogels and evaluate their impact on starch digestibility in cookies. The in vitro digestibility study confirmed that the OCW/ODS-based cookies exhibited a notable enhancement of 14.6% in slowly digestible starch (SDS) and an increase of 3.14% in resistant starch (RS) values when contrasted with shortening cookies. The XRD pattern indicated that the existence of ODS may improve the formation of complexes between lipids and amylose. The DSC analysis demonstrated that the incorporation of ODS led to a remarkable rise in enthalpy alteration, escalating from 0.90 to 437.70 J/g, suggesting an improved ability to resist gelatinization. The FTIR spectra suggested that the incorporation of ODS might strengthen interactions between the hydrogen bonds and form the short-range ordered structure in OCW/ODS-based cookies. Overall, these results indicated that incorporating OCW/ODS-based oleogels could serve as a feasible substitute for conventional shortening in cookies with decreased starch digestibility.

13.
Front Nutr ; 11: 1428542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176031

RESUMEN

Sorghum (Sorghum bicolor L. Moench), characterized by substantial genetic diversity, encompasses some lines rich in health-promoting polyphenols. Laboratory studies have demonstrated anticancer properties of sorghum phenolics; however, their presence may impact nutritional factors, such as digestible starch. The objective of this study was to determine the effects of pH and high-moisture heating on starch digestibility, phenolic profile, and anticancer activity in sorghum. High Phenolic sorghum flour line SC84 was combined with buffer solutions (pH 3, 4, 5, 7, and 8) and heated for 0, 10, 30, 60, or 120 min. Starch digestibility was assessed using the K-DSTRS kit from Megazyme. Changes in phenolic composition were analyzed using total phenolic content (TPC) and condensed tannin content (CTC) assays coupled with reversed phase high performance liquid chromatography (RP-HPLC) analysis. Anticancer potential against human colorectal cancer cells (HCT116 and SW480) was determined though cell viability assay. Results indicated a significant increase in total starch digestibility of sample after heating. Heating samples for 10 min did not significantly reduce TPC of samples. However, CTC was significantly reduced with heating time, while pH exhibited no significant effect on CTC. The measured 3-deoxyanthocyanidins experienced a significant decrease (p < 0.0001), while certain flavonoids increased significantly (p < 0.05) after heating for 30 min or longer. Notably, the 10 min heating duration minimally affected anticancer activity, whereas longer heat times diminished extract efficacy against human colorectal cancer cells. Alkaline pH levels significantly decreased anticancer activity, regardless of heating time. Importantly, heating sorghum for 10 min improved starch digestibility with minimal compromise to potential health benefits. These findings suggest promising implications for the development of high-phenolic sorghum products, and provide valuable insights to guide forthcoming animal and clinical studies. The demonstrated impact of wet-heating on increased starch digestibility, coupled with the preservation of phenolic content and bioactivity, underscores the potential of incorporating high-phenolic sorghum lines in future functional food formulations.

14.
J Sci Food Agric ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092915

RESUMEN

BACKGROUND: Chinese steamed bread (CSB) is one of the most important staple foods in China and is also popular in South-East Asia. Developing functional CSB could improve people's resistance to inflammatory and non inflammatory diseases. This work investigated the effect of sorghum bran addition on antioxidant activities, sensory properties, and in vitro starch digestibility of Chinese southern-style steamed bread (CSSB). RESULTS: In this study, the enhanced CSSB with 0-200 g kg-1 of fine black and tannin (sumac) sorghum bran addition was developed. A small change in phenol content and antioxidant activity was observed at various stages in the processing procedure before steaming. Moreover, a high retention of antioxidant phenolics CSSB with sorghum bran addition was observed. Sorghum bran addition significantly increased the total phenol content and antioxidant activity of CSSB by 4.5-10 times, on average, relative to control. Sorghum bran addition significantly also increased the content of resistant starch, and significantly decreased in vitro starch digestibility in CSSB; these effects were likely due to the joint inhibitory effect of tannins and ferulic acid on starch digestibility. Interestingly, the sorghum bran breads scored higher or similar to control in sensory color preference and overall appearance, but lower on most textural and mouthfeel attributes. CONCLUSION: Sorghum bran addition significantly increased the antioxidant activity of CSSB and significantly decreased starch digestibility. Moreover, the color and appearance properties were maintained or improved. However, the sensorial textural attributes were negatively impacted by the sorghum bran substitutions. Strategies to improve the texture of bran-fortified breads would likely enhance their consumer acceptability. © 2024 Society of Chemical Industry.

15.
J Sci Food Agric ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953558

RESUMEN

BACKGROUND: Rice is considered a high estimated glycemic index (eGI) food because of its higher starch digestibility, which leads to type II diabetes and obesity as a result of a sedentary life style. Furthermore, the incresaing diabetes cases in rice-consuming populations worldwide need alternative methods to reduce the glycemic impact of rice, with dietary prescriptions based on the eGI value of food being an attractive and practical concept. Rice is often paired with vegetables, pulses, tubers and roots, a staple food group in Africa, Latin America and Asia, which are rich in fibre and health-promoting compounds. RESULTS: Rice from four categories (high protein, scented, general and pigmented) was analyzed for eGI and resistant starch (RS) content. Among the genotypes, Improved Lalat had the lowest eGI (53.12) with a relatively higher RS content (2.17%), whereas Hue showed the lowest RS (0.19%) with the highest eGI (76.3) value. The addition of tuber crops to rice caused a significant lowering of eGI where the maximum beneficial effect was shown by elephant foot yam (49.37) followed by yam bean (53.07) and taro (54.43). CONCLUSION: The present study suggests that combining rice with suitable tuber crops can significantly reduce its eGI value, potentially reducing the burden of diet-associated lifestyle diseases particularly diabetics. © 2024 Society of Chemical Industry.

16.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920118

RESUMEN

As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.

17.
Food Sci Nutr ; 12(6): 4284-4291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873475

RESUMEN

The aim of this study is to increase the functionality of rice starch by modifying matcha tea extract and to determine the effect on some physicochemical properties and starch digestibility. According to the data analyzed, treatment with matcha extract was effective in increasing the nutritional value of native rice starch. At the highest level of extract addition, total phenolic and flavonoid content reached 129.54 mg/100 g and 40.16 mg/100 g, respectively, as no phenolic or flavonoid content was detected in control. In addition, the highest DPPH and FRAP values were determined to be 296.62 µmol TE/100 g and 814.89 mg/100 g, respectively, at the highest extract addition level. Treatment with matcha extract significantly reduced the eGI of native rice starch from to 94.61 to 64.63, while resistant starch was increased from 0.90 to 33.43%. According to the physiochemical analysis, there was a positive correlation between the extract ratio and the water-holding capacity of rice starch due to the high hydrophilic capacity of the phenolic compounds. In addition, the solubility and swelling power of starch were increased by treatment with matcha extract, but high temperatures had a negative effect on these physicochemical properties.

18.
Food Res Int ; 188: 114517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823849

RESUMEN

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Asunto(s)
Glucemia , Cicer , Estudios Cruzados , Digestión , Insulina , Periodo Posprandial , Reología , Humanos , Cicer/química , Periodo Posprandial/fisiología , Insulina/sangre , Insulina/metabolismo , Glucemia/metabolismo , Adulto , Masculino , Femenino , Adulto Joven , Almidón/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/sangre , Voluntarios Sanos , Cinética
19.
Curr Res Food Sci ; 8: 100770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860263

RESUMEN

The objective of this work was to completely replace margarine with peanut diacylglycerol oil/ethyl cellulose-glycerol monostearate oleogel (DEC/GMS) oleogel, and evaluate its effect on starch digestibility of cakes. The in vitro digestibility analysis demonstrated that the DEC/GMS-6 cake exhibited a 26.36% increase in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cakes formulated with margarine. The increased SDS and RS contents might mainly be due to the hydrophobic nature of OSA-wheat flour, which could promote the formation of lipid-amylose complexes with GMS and peanut diacylglycerol oil. XRD pattern suggested that the presence of GMS in DEC-based oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of GMS resulted in a significant increase in gelatinization enthalpy, rising from 249.7 to 551.9 J/g, which indicates an improved resistance to gelatinization. The FTIR spectra indicated that the combination of GMS could enhance the hydrogen bonding forces and short-range ordered structure in DEC-based cakes. The rheological analysis revealed that an increase in GMS concentration resulted in enhanced viscoelasticity of DEC-based cake compared to TEC-based cakes. The DEC-based cakes exhibited a more satisfactory texture profile and higher overall acceptability than those of TEC-based cakes. Overall, these findings demonstrated that the utilization of DEC-based oleogel presented a viable alternative to commercial margarine in the development of cakes with reduced starch digestibility.

20.
J Sci Food Agric ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837400

RESUMEN

BACKGROUND: Rice grain analogues with slow starch digestibility are commonly associated with an unsatisfactory texture, often leading to consumer dissatisfaction. Alginate encapsulation has been applied to reduce the digestibility of corn and potato starch. The fine molecular structures of rice starch can greatly determine its digestibility and texture. However, it remains unclear whether a combination of alginate encapsulation and varied starch molecular structures can be employed to create rice grain analogues that offer both slow starch digestibility and an appealing texture. RESULTS: For the first time, the present study constructed alginate-encapsulated rice beads (as a rice grain analogue). A wide range of starch digestion rates were found among alginate-encapsulated rice beads prepared with different rice varieties, and only certain rice varieties (e.g. Subei and Nanjing) were able to result in rice beads with slower starch digestibility than their parental rice kernels. More importantly, all rice beads showed a relatively softer texture compared to their parental rice kernels. Correlation analysis showed that starch digestion rate, hardness and stickiness were all positively correlated with the ratio of short-range amorphous regions in rice bead samples, as obtained from Fourier transform-infrared spectroscopy, but not with the relative crystallinity. CONCLUSION: Collectively, these results suggest that rice beads with slower starch digestion rate and softer texture could be obtained by choosing rice varieties that develop more short-range ordered structure after cooking. © 2024 Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA