Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.134
Filtrar
1.
J Mol Biol ; : 168772, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222679

RESUMEN

The highly conserved Hsp90 chaperones control stability and activity of many essential signaling and regulatory proteins including many protein kinases, E3 ligases and transcription factors. Thereby, Hsp90s couple cellular homeostasis of the proteome to cell fate decisions. High-throughput mass spectrometry revealed 178 and 169 posttranslational modifications (PTMs) for human cytosolic Hsp90α and Hsp90ß, but for only a few of the modifications the physiological consequences are investigated in some detail. In this study, we explored the suitability of the yeast model system for the identification of key regulatory residues in human Hsp90α. Replacement of three tyrosine residues known to be phosphorylated by phosphomimetic glutamate and by non-phosphorylatable phenylalanine individually and in combination influenced yeast growth and the maturation of 7 different Hsp90 clients in distinct ways. Furthermore, wild-type and mutant Hsp90 differed in their ability to stabilize known clients when expressed in HepG2 HSP90AA1-/- cells. The purified mutant proteins differed in their interaction with the cochaperones Aha1, Cdc37, Hop and p23 and in their support of the maturation of glucocorticoid receptor ligand binding domain in vitro. In vivo and in vitro data correspond well to each other confirming that the yeast system is suitable for the identification of key regulatory sites in human Hsp90s. Our findings indicate that even closely related clients are affected differently by the amino acid replacements in the investigated positions, suggesting that PTMs could bias Hsp90's client specificity.

2.
Enzyme Microb Technol ; 180: 110495, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121638

RESUMEN

Paraben hydrolase and tannase catalyze the hydrolysis of parabens (4-hydroxybenzoic acid esters) and gallic acid (3,4,5-trihydroxybenzoic acid) esters, respectively. Paraben hydrolase (AoPrbA) and tannase (AoTanB) from Aspergillus oryzae belong to the tannase family in the ESTHER database. However, the substrate specificities of AoPrbA and AoTanB are narrow. Based on structural information of Aspergillus niger tannase (PDB code 7k4o), we constructed five single variants of AoPrbA (Thr200Glu, Phe231Gln, Leu232Gln, Ile361Tyr, and Leu428Ser) and four of AoTanB (Glu203Asp, Glu203Thr, His237Ala, and Ser440Leu) to investigate substrate discrimination between AoPrbA and AoTanB. Each variant was expressed in Pichia pastoris and were purified from the culture supernatant. Five purified variants of AoPrbA and four variants of AoTanB showed reduced paraben hydrolase and tannase activities compared with AoPrbA and AoTanB wild types, respectively. Interestingly, the AoPrbA wild type did not hydrolyze gallic acid methyl ester, whereas the Thr200Glu, Leu232Gln, and Leu428Ser variants did, indicating that these three variants acquired tannase activity. In particular, the Leu428Ser variant exhibited considerably greater hydrolysis of gallic acid and protocatechuic acid methyl esters. Meanwhile, the AoTanB wild type, and Glu203Asp, His237Ala and Ser440Leu variants hydrolyzed the protocatechuate methyl and 4-hydroxybenzoate ethyl esters; however, the Glu203Thr variant did not hydrolyze above-mentioned substrates. Additionally, the ratio of paraben hydrolase activity to tannase activity in Ser440Leu was markedly elevated.

3.
Protein Sci ; 33(9): e5139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150063

RESUMEN

The main protease from coronaviruses and the 3C protease from enteroviruses play a crucial role in processing viral polyproteins, making them attractive targets for the development of antiviral agents. In this study, we employed a combinatorial chemistry approach-HyCoSuL-to compare the substrate specificity profiles of the main and 3C proteases from alphacoronaviruses, betacoronaviruses, and enteroviruses. The obtained data demonstrate that coronavirus Mpros exhibit overlapping substrate specificity in all binding pockets, whereas the 3Cpro from enterovirus displays slightly different preferences toward natural and unnatural amino acids at the P4-P2 positions. However, chemical tools such as substrates, inhibitors, and activity-based probes developed for SARS-CoV-2 Mpro can be successfully applied to investigate the activity of the Mpro from other coronaviruses as well as the 3Cpro from enteroviruses. Our study provides a structural framework for the development of broad-spectrum antiviral compounds.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Enterovirus , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Especificidad por Sustrato , Enterovirus/enzimología , Enterovirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Humanos , Coronavirus/enzimología , Coronavirus/efectos de los fármacos
4.
J Agric Food Chem ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214858

RESUMEN

Understanding the substrate specificity of carrageenases has long been of interest in biotechnology applications. So far, the structural basis of the ßκ-carrageenase that hydrolyzes furcellaran, a major hybrid carrageenan, remains unclear. Here, the crystal structure of Cgbk16A_Wf, as a representative of the ßκ-carrageenase from GH16_13, was determined, and the structural characteristics of this subfamily were elucidated for the first time. The substrate binding mode was clarified through a structure analysis of the hexasaccharide-bound complex and molecular docking. The binding pocket involves a conserved catalytic motif and several specific residues associated with substrate recognition. Functions of residues R88, E290, and E184 were validated through site-directed mutagenesis. Comparing ßκ-carrageenase with κ-carrageenase, we proposed that their different substrate specificities are partly due to the distinct conformations of subsite -1. This research offers a comprehensive understanding of the recognition mechanism of carrageenases and provides valuable theoretical support for enzyme modification and carrageenan oligosaccharide preparation.

5.
Mar Drugs ; 22(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39195464

RESUMEN

Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.


Asunto(s)
Péptido Sintasas , Ingeniería de Proteínas , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptido Sintasas/química , Especificidad por Sustrato , Organismos Acuáticos , Dominio Catalítico , Animales
6.
J Biol Chem ; 300(9): 107633, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098534

RESUMEN

DNA methylation is one of the major epigenetic mechanisms crucial for gene regulation and genome stability. De novo DNA methyltransferase DNMT3C is required for silencing evolutionarily young transposons during mice spermatogenesis. Mutation of DNMT3C led to a sterility phenotype that cannot be rescued by its homologs DNMT3A and DNMT3B. However, the structural basis of DNMT3C-mediated DNA methylation remains unknown. Here, we report the structure and mechanism of DNMT3C-mediated DNA methylation. The DNMT3C methyltransferase domain recognizes CpG-containing DNA in a manner similar to that of DNMT3A and DNMT3B, in line with their high sequence similarity. However, two evolutionary covariation sites, C543 and E590, diversify the substrate interaction among DNMT3C, DNMT3A, and DNMT3B, resulting in distinct DNA methylation activity and specificity between DNMT3C, DNMT3A, and DNMT3B in vitro. In addition, our combined structural and biochemical analysis reveals that the disease-causing rahu mutation of DNMT3C compromises its oligomerization and DNA-binding activities, explaining the loss of DNA methylation activity caused by this mutation. This study provides a mechanistic insight into DNMT3C-mediated DNA methylation that complements DNMT3A- and DNMT3B-mediated DNA methylation in mice, unraveling a regulatory mechanism by which evolutionary conservation and diversification fine-tune the activity of de novo DNA methyltransferases.

7.
J Biol Chem ; : 107629, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098524

RESUMEN

Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters (OCT) for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations the membrane transporters are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.

8.
J Biol Chem ; 300(8): 107550, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002682

RESUMEN

The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.

9.
J Biol Chem ; 300(8): 107588, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032654

RESUMEN

Protein phosphorylation by kinases regulates mammalian cell functions, such as growth, division, and signal transduction. Among human kinases, NME1 and NME2 are associated with metastatic tumor suppression but remain understudied due to the lack of tools to monitor their cellular substrates. In particular, NME1 and NME2 are multispecificity kinases phosphorylating serine, threonine, histidine, and aspartic acid residues of substrate proteins, and the heat and acid sensitivity of phosphohistidine and phosphoaspartate complicates substrate discovery and validation. To provide new substrate monitoring tools, we established the γ-phosphate-modified ATP analog, ATP-biotin, as a cosubstrate for phosphorylbiotinylation of NME1 and NME2 cellular substrates. Building upon this ATP-biotin compatibility, the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method enabled validation of a known substrate and the discovery of seven NME1 and three NME2 substrates. Given the paucity of methods to study kinase substrates, ATP-biotin and the Kinase-catalyzed Biotinylation with Inactivated Lysates for Discovery of Substrates method are valuable tools to characterize the roles of NME1 and NME2 in human cell biology.

10.
Proteins ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023292

RESUMEN

Butanol dehydrogenase (BDH) plays a crucial role in butanol biosynthesis by catalyzing the conversion of butanal to butanol using the coenzyme NAD(P)H. In this study, we observed that BDH from Thermotoga maritima (TmBDH) exhibits dual coenzyme specificity and catalytic activity with NADPH as the coenzyme under highly alkaline conditions. Additionally, a thermal stability analysis on TmBDH demonstrated its excellent activity retention even at elevated temperatures of 80°C. These findings demonstrate the superior thermal stability of TmBDH and suggest that it is a promising candidate for large-scale industrial butanol production. Furthermore, we discovered that TmBDH effectively catalyzes the conversion of aldehydes to alcohols and exhibits a wide range of substrate specificities toward aldehydes, while excluding alcohols. The dimeric state of TmBDH was observed using rapid online buffer exchange native mass spectrometry. Additionally, we analyzed the coenzyme-binding sites and inferred the possible locations of the substrate-binding sites. These results provide insights that improve our understanding of BDHs.

11.
Subcell Biochem ; 104: 503-530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963498

RESUMEN

Invertases, or ß-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a ß-propeller catalytic domain, and a ß-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.


Asunto(s)
beta-Fructofuranosidasa , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/genética , Especificidad por Sustrato , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Dominio Catalítico , Modelos Moleculares
12.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000228

RESUMEN

Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.


Asunto(s)
Aspergillus ochraceus , Proteínas Fúngicas , Péptido Hidrolasas , Aspergillus ochraceus/metabolismo , Aspergillus ochraceus/genética , Péptido Hidrolasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Proteolisis , Filogenia , Genoma Fúngico , Transcriptoma
13.
Protein Sci ; 33(8): e5118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39022984

RESUMEN

Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.


Asunto(s)
Multimerización de Proteína , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Especificidad por Sustrato , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Metilación
14.
AMB Express ; 14(1): 83, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033088

RESUMEN

Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a ß-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl ß-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.

15.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072959

RESUMEN

Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated ß-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed ß-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.

16.
Biosci Biotechnol Biochem ; 88(9): 1069-1072, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38871868

RESUMEN

Gluconobacter oxydans succinic semialdehyde reductase (GoxSSAR) and Acetobacter aceti glyoxylate reductase (AacGR) represent a novel class in the ß-hydroxyacid dehydrogenases superfamily. Kinetic analyses revealed GoxSSAR's activity with both glyoxylate and succinic semialdehyde, while AacGR is glyoxylate specific. GoxSSAR K167A lost activity with succinic semialdehyde but retained some with glyoxylate, whereas AacGR K175A lost activity. These findings elucidate differences between these homologous enzymes.


Asunto(s)
Acetobacter , Oxidorreductasas de Alcohol , Gluconobacter oxydans , Glioxilatos , Especificidad por Sustrato , Gluconobacter oxydans/enzimología , Gluconobacter oxydans/metabolismo , Acetobacter/enzimología , Acetobacter/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Cinética , Glioxilatos/metabolismo , Succionato-Semialdehído Deshidrogenasa/metabolismo , Succionato-Semialdehído Deshidrogenasa/química , Succionato-Semialdehído Deshidrogenasa/genética , Ácido gamma-Aminobutírico/análogos & derivados
17.
J Biol Chem ; 300(8): 107509, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944126

RESUMEN

Shy (side chain hydratase) and Sal (side chain aldolase), are involved in successive reactions in the pathway of bile acid side chain catabolism in Proteobacteria. Untagged Shy copurified with His-tagged Sal indicating that the two enzymes form a complex. Shy contains a MaoC and a DUF35 domain. When coexpressed with Sal, the DUF35 domain but not the MaoC domain of Shy was observed to copurify with Sal, indicating Sal interacts with Shy through its DUF35 domain. The MaoC domain of Shy (ShyMaoC) remained catalytically viable and could hydrate cholyl-enoyl-CoA with similar catalytic efficiency as in the Shy-Sal complex. Sal expressed with the DUF35 domain of Shy (Sal-ShyDUF35) was similarly competent for the retro-aldol cleavage of cholyl-3-OH-CoA. ShyMaoC showed a preference for C5 side chain bile acid substrates, exhibiting low activity toward C3 side chain substrates. The ShyMaoC structure was determined by X-ray crystallography, showing a hot dog fold with a short central helix surrounded by a twisted antiparallel ß-sheet. Modeling and mutagenesis studies suggest that the bile acid substrate occupies the large open cleft formed by the truncated central helix and repositioning of the active site housing. ShyMaoC therefore contains two substrate binding sites per homodimer, making it distinct from previously characterized MaoC steroid hydratases that are (pseudo) heterodimers with one substrate binding site per dimer. The characterization of Shy provides insight into how MaoC family hydratases have adapted to accommodate large polycyclic substrates that can facilitate future engineering of these enzymes to produce novel steroid pharmaceuticals.

18.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865266

RESUMEN

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Asunto(s)
Compuestos de Amonio Cuaternario , Especificidad por Sustrato , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/química , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/química , Modelos Moleculares
19.
Sci Rep ; 14(1): 14602, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918500

RESUMEN

L-2-Keto-3-deoxyfuconate 4-dehydrogenase (L-KDFDH) catalyzes the NAD+-dependent oxidization of L-2-keto-3-deoxyfuconate (L-KDF) to L-2,4-diketo-3-deoxyfuconate (L-2,4-DKDF) in the non-phosphorylating L-fucose pathway from bacteria, and its substrate was previously considered to be the acyclic α-keto form of L-KDF. On the other hand, BDH2, a mammalian homolog with L-KDFDH, functions as a dehydrogenase for cis-4-hydroxy-L-proline (C4LHyp) with the cyclic structure. We found that L-KDFDH and BDH2 utilize C4LHyp and L-KDF, respectively. Therefore, to elucidate unique substrate specificity at the atomic level, we herein investigated for the first time the crystal structures of L-KDFDH from Herbaspirillum huttiense in the ligand-free, L-KDF and L-2,4-DKDF, D-KDP (D-2-keto-3-deoxypentonate; additional substrate), or L-2,4-DKDF and NADH bound forms. In complexed structures, L-KDF, L-2,4-DKDF, and D-KDP commonly bound as a α-furanosyl hemiketal. Furthermore, L-KDFDH showed no activity for L-KDF and D-KDP analogs without the C5 hydroxyl group, which form only the acyclic α-keto form. The C1 carboxyl and α-anomeric C2 hydroxyl groups and O5 oxygen atom of the substrate (and product) were specifically recognized by Arg148, Arg192, and Arg214. The side chain of Trp252 was important for hydrophobically recognizing the C6 methyl group of L-KDF. This is the first example showing the physiological role of the hemiketal of 2-keto-3-deoxysugar acid.


Asunto(s)
Modelos Moleculares , Especificidad por Sustrato , Cristalografía por Rayos X , Unión Proteica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión
20.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1833-1844, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914494

RESUMEN

Protein folding and quality control processes primarily occur in the endoplasmic reticulum (ER). ER-resident molecular chaperones play a crucial role in guiding nascent polypeptides towards their correct tertiary structures. Some of these chaperones specifically recognize glucosylated N-glycan moieties on peptide. It is of great significance to study the N-glycan biosynthetic pathway and glycoprotein quality control system by analyzing the sugar donor of ER luminal glucosyltransferases, known as dolichol phosphate glucose (Dol-P-Glc), or its analogues in vitro. In this study, we investigated a range of dolichol analogues to synthesize lipid phosphate glucose, which served as substrates for dolichyl-phosphate ß-glucosyltransferase E (Alg5E) derived from Trichomonas vaginalis. The results demonstrated that the recombinant Alg5E, expressed in Escherichia coli, exhibited strong catalytic activity and the ability to recognize lipid phosphate glucose with varying chain lengths. Interestingly, the enzyme's catalytic reaction was found to be faster with longer carbon chains in the substrate. Additionally, Alg5E showed a preference for branched chain methyl groups in the lipid structure. Furthermore, our study confirmed the importance of divalent metal ions in the binding of the crucial DXD motif, which is essential for the enzyme's catalytic function. These findings lay the groundwork for future research on glucosyltransferases Alg6, Alg8, and Alg10 in the synthesis pathway of dolichol-linked oligosaccharide (DLO).


Asunto(s)
Glucosiltransferasas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Especificidad por Sustrato , Escherichia coli/genética , Escherichia coli/metabolismo , Trichomonas vaginalis/enzimología , Trichomonas vaginalis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Fosfatos de Dolicol/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA