Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.344
Filtrar
1.
Elife ; 132024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088250

RESUMEN

The brain's ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons' activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.


Asunto(s)
Miedo , Corteza Insular , Optogenética , Animales , Miedo/fisiología , Masculino , Ratones , Corteza Insular/fisiología , Vías Nerviosas/fisiología , Amígdala del Cerebelo/fisiología , Condicionamiento Clásico/fisiología , Ratones Endogámicos C57BL , Células Piramidales/fisiología
3.
J Neurophysiol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110512

RESUMEN

How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprised of both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole-cell patch clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine treated mice. We found that that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.

4.
J Neurol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126514

RESUMEN

BACKGROUND: Midline Tremor is defined as an isolated or combined tremor that affects the neck, trunk, jaw, tongue, and/or voice and could be part of Essential Tremor (ET), or dystonic tremor. The clinical efficacy of deep brain stimulation for Midline Tremor has been rarely reported. The Ventral Intermediate Nucleus and Globus Pallidus Internus are the preferred targets, but with variable outcomes. Thalamic Ventral-Oralis (VO) complex and Zona Incerta (ZI) are emerging targets for tremor control in various etiologies. OBJECTIVE: To report on neuroradiological, neurophysiological targeting and long-term efficacy of thalamic Ventral-Oralis complex and Zona Incerta deep brain stimulation in Midline Tremor. METHODS: Three patients (two males and one female) with Midline Tremor in dystonic syndromes were recruited for this open-label study. Clinical, surgical, neurophysiological intraoperative testing and long-term follow-up data are reported. RESULTS: Intraoperative testing and reconstruction of volume of tissue activated confirmed the position of the electrodes in the area stimulated between the thalamic Ventral-Oralis complex and Zona Incerta in all patients. All three patients showed optimal control of both tremor and dystonic features at short-term (6 months) and long-term follow-up (up to 6 years). No adverse events occurred. CONCLUSION: In the syndromes of Midline Tremor of various origins, the best target for DBS might be difficult to identify. Our results showed that thalamic Ventral-Oralis complex/Zona Incerta may be a viable and safe option even in specific forms of tremor with axial distribution.

5.
Int J Clin Exp Pathol ; 17(7): 227-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114504

RESUMEN

A case of diffuse midline glioma (DMG), H3 K27-altered, that arose in the right thalamus of a 14-year-old boy is reported. The patient died of tumor spread after a progressive clinical course of approximately 13 months. Histopathologically, the tumor consisted of a mixture of loose proliferation of stellate cells and compact fascicular growth of spindle cells showing a "piloid" feature. Aggregates of globular structures composed of entangled fine glial fibrils ("glio-fibrillary globules, GFGs") were observed. Tumor cells were immunoreactive for S-100 protein and glial fibrillary acidic protein (GFAP), and showed nuclear immunoreactivity for histone H3 K27M and loss of expression of H3 K27me3. Tumor cell nuclei were also negative for alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX) and p16. Although GFGs morphologically resembled "neuropil-like islands" or "neurocytic rosettes" seen in glial or glio-neuronal tumors, they showed immunoreactivity for GFAP, but not for synaptophysin. A GFG is a unique structure that has been described in DMG, H3 K27-altered, by a few investigators. To the best of our knowledge, this structure has not previously been reported in other glial or glio-neuronal tumors. It could be added as a new feature in the histopathological variations of DMG, extending its morphological spectrum. Familiarity with this feature can help prevent misdiagnosis of DMG.

6.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197951

RESUMEN

The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.


Asunto(s)
Corteza Cerebral , Vías Nerviosas , Tálamo , Corteza Cerebral/fisiología , Humanos , Animales , Tálamo/fisiología , Vías Nerviosas/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-39182722

RESUMEN

BACKGROUND: Thalamic nuclei facilitate a wide range of complex behaviors, emotions, and cognition and have been implicated in neuropsychiatric disorders including Alzheimer's disease (AD) and schizophrenia. The aim of this work was to establish novel normative models of thalamic nuclear volumes and their laterality indices and investigate their changes in schizophrenia and AD. METHODS: Volumes of bilateral whole thalami and 10 thalamic nuclei were generated from T1 MRI data using a state-of-the-art novel segmentation method in healthy control subjects (n=2374) and early mild cognitive impairment (MCI, n=211), late MCI (n=113), AD (n=88), and schizophrenia (n=168). Normative models for each nucleus were generated from healthy control subjects while controlling for sex, intracranial volume, and site. Extreme z-score deviations (|z|>1.96) and z-score distributions were compared across phenotypes. Z-scores were associated with clinical descriptors. RESULTS: Increased infranormal and decreased supranormal z-scores were observed in schizophrenia and AD. Z-score shifts representing reduced volumes were observed in most nuclei in schizophrenia and AD with strong overlap in the bilateral pulvinar, medial dorsal, and centromedian nuclei. Shifts were larger in AD with evidence of a left-sided preference in early MCI while a predilection for right thalamic nuclei was observed in schizophrenia. The right medial dorsal nucleus was associated with disorganized thought and daily auditory verbal hallucinations. CONCLUSION: In AD, thalamic nuclei are more severely and symmetrically affected while in schizophrenia, the right thalamic nuclei are more affected. We highlight the right medial dorsal nucleus, which may mediate multiple symptoms of schizophrenia and is affected early in the disease course.

8.
Brain Behav Immun ; 122: 345-352, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163909

RESUMEN

Neuroinflammation is a key component underlying multiple neurological disorders, yet non-invasive and cost-effective assessment of in vivo neuroinflammatory processes in the central nervous system remains challenging. Diffusion weighted magnetic resonance spectroscopy (dMRS) has shown promise in addressing these challenges by measuring diffusivity properties of different neurometabolites, which can reflect cell-specific morphologies. Prior work has demonstrated dMRS utility in capturing microglial reactivity in the context of lipopolysaccharide (LPS) challenges and serious neurological disorders, detected as changes of microglial metabolite diffusivity properties. However, the extent to which such dMRS metrics are capable of detecting subtler and more nuanced levels of neuroinflammation in populations without overt neuropathology is unknown. Here we examined the relationship between intrinsic, gut-derived levels of systemic LPS and dMRS-based apparent diffusion coefficients (ADC) of choline, creatine, and N-acetylaspartate (NAA) in two brain regions: the thalamus and the corona radiata. Higher plasma LPS concentrations were significantly associated with increased ADC of choline and NAA in the thalamic region, with no such relationships observed in the corona radiata for any of the metabolites examined. As such, dMRS may have the sensitivity to measure microglial reactivity across populations with highly variable levels of neuroinflammation, and holds promising potential for widespread applications in both research and clinical settings.

9.
Brain Behav Immun ; 122: 202-215, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142423

RESUMEN

BACKGROUND: Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease, whose primary hallmark is the occurrence of inflammatory lesions in white and grey matter structures. Increasing evidence in MS patients and respective murine models reported an impaired ionic homeostasis driven by inflammatory-demyelination, thereby profoundly affecting signal propagation. However, the impact of a focal inflammatory lesion on single-cell and network functionality has hitherto not been fully elucidated. OBJECTIVES: In this study, we sought to determine the consequences of a localized cortical inflammatory lesion on the excitability and firing pattern of thalamic neurons in the auditory system. Moreover, we tested the neuroprotective effect of Retigabine (RTG), a specific Kv7 channel opener, on disease outcome. METHODS: To resemble the human disease, we focally administered pro-inflammatory cytokines, TNF-α and IFN-γ, in the primary auditory cortex (A1) of MOG35-55 immunized mice. Thereafter, we investigated the impact of the induced inflammatory milieu on afferent thalamocortical (TC) neurons, by performing ex vivo recordings. Moreover, we explored the effect of Kv7 channel modulation with RTG on auditory information processing, using in vivo electrophysiological approaches. RESULTS: Our results revealed that a cortical inflammatory lesion profoundly affected the excitability and firing pattern of neighboring TC neurons. Noteworthy, RTG restored control-like values and TC tonotopic mapping. CONCLUSION: Our results suggest that RTG treatment might robustly mitigate inflammation-induced altered excitability and preserve ascending information processing.

10.
Pflugers Arch ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177699

RESUMEN

Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.

12.
J Affect Disord ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197547

RESUMEN

BACKGROUND: Anhedonia stands as a life-threatening transdiagnostic feature of many mental illnesses, most notably major depression and involves neural circuits for processing reward information. The paraventricular nucleus of the thalamus (PVT) is associated with reward-seeking behavior, however, links between the PVT circuit and anhedonia have not been investigated in humans. METHODS: In a sample of adults with and without psychiatric symptoms (n = 75, 18-41 years, 55 female), we generated an anhedonia factor score for each participant using a latent factor analysis, utilizing data from depression and anxiety assessments. Functional connectivity between the PVT and the nucleus accumbens (NAc) was calculated from high-resolution (1.5 mm) resting state fMRI. RESULTS: Anhedonia factor scores showed a positive relationship with functional connectivity between the PVT and the NAc, principally in males and in those with psychiatric symptoms. In males, connectivity between other midline thalamic nuclei and the NAc did not show these relationships, suggesting that this link may be specific to PVT. LIMITATIONS: This cohort was originally recruited to study depression and not anhedonia per se. The distribution of male and female participants in our cohort was not equal. Partial acquisition in high-resolution fMRI scans restricted regions of interest outside of the thalamus and reward networks. CONCLUSIONS: We report evidence that anhedonia is associated with enhanced functional connectivity between the PVT and the NAc, regions that are relevant to reward processing. These results offer clues as to the potential prevention and prevention and treatment of anhedonia.

13.
Brain Sci ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199436

RESUMEN

Pain is a complex response to noxious stimuli. Upon detection of the nociceptive stimulus by first-order neurons or nociceptors, an action potential ascends to the spinal dorsal horn, a crucial site for synapsing with second-order neurons. These second-order neurons carry the nociceptive stimulus to supraspinal regions, notably the thalamus. Although extensive research has focused on spinal-level nociceptive mechanisms (e.g., neurotransmitters, receptors, and glial cells), the thalamus is still poorly elucidated. The role of the thalamus in relaying sensory and motor responses to the cortex is well known. However, a comprehensive understanding of the mechanisms in the synapse between the second-order and third-order neurons that transmit this impulse to the somatosensory cortex, where the response is processed and interpreted as pain, is still lacking. Thus, this review investigated the thalamus's role in transmitting nociceptive impulses. Current evidence indicates the involvement of the neurotransmitters glutamate and serotonin, along with NMDA, P2X4, TLR4, FGR, and NLRP3 receptors, as well as signaling pathways including ERK, P38, NF-κB, cytokines, and glial cells at nociceptive synapses within the thalamus.

14.
Brain Imaging Behav ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196522

RESUMEN

Frontal-striatal-thalamic circuit impairment is presumed to underlie schizophrenia. Individuals with attenuated psychosis syndrome (APS) show longitudinal volume reduction of the putamen in the striatum, which has a neural connection with the premotor cortex through the frontal-striatal-thalamic subcircuit. However, comprehensive investigations into the biological changes in the frontal-striatal-thalamic subcircuit originating from the premotor cortex in APS are lacking. We investigated differences in fractional anisotropy (FA) values between the striatum and premotor cortex (ST-PREM) and between the thalamus and premotor cortex (T-PREM) in individuals with APS and healthy controls, using a novel method TractSeg. Our study comprised 36 individuals with APS and 38 healthy controls. There was a significant difference between the control and APS groups in the right T-PREM (odds ratio = 1.76, p = 0.02). Other factors, such as age, sex, other values of FA, and antipsychotic medication, were not associated with differences between groups. However, while FA value reduction of ST-PREM and T-PREM in schizophrenia has been previously reported, in the present study on APS, the alteration of the FA value was limited to T-PREM in APS. This finding suggests that ST-PREM impairment is not predominant in APS but emerges in schizophrenia. Impairment of the neural network originating from the premotor cortex can lead to catatonia and aberrant mirror neuron networks that are presumed to provoke various psychotic symptoms of schizophrenia. Our findings highlight the potential role of changes in a segment of the frontal-thalamic pathway derived from the premotor cortex as a biological basis of APS.

15.
Brain Connect ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39135472

RESUMEN

Background: Generalized anxiety disorder (GAD) and social anxiety disorder (SAD) are distinguished by whether anxiety is limited to social situations. However, reports on the differences in brain functional networks between GAD and SAD are few. Our objective is to understand the pathogenesis of GAD and SAD by examining the differences in resting brain function between patients with GAD and SAD and healthy controls (HCs). Methods: This study included 21 patients with SAD, 17 patients with GAD, and 30 HCs. Participants underwent psychological assessments and resting-state functional magnetic resonance imaging. Whole-brain analyses were performed to compare resting-state functional connectivity (rsFC) among the groups. In addition, logistic regression analysis was conducted on the rsFC to identify significant differences between GAD and SAD. Results: Patients with SAD and GAD had significantly higher rsFC between the bilateral postcentral gyri and bilateral amygdalae/thalami than HCs. Compared with patients with SAD, those with GAD had significantly higher rsFC between the right nucleus accumbens and bilateral thalami and between the left nucleus accumbens and right thalamus. rsFC between the left nucleus accumbens and right thalamus positively correlated with state anxiety in patients with SAD and GAD, respectively. In addition, logistic regression analysis revealed that the right nucleus accumbens and the right thalamus connectivity could distinguish SAD from GAD. Conclusions: GAD and SAD were distinguished by the right nucleus accumbens and the right thalamus connectivity. Our findings offer insights into the disease-specific neural basis of SAD and GAD. Clinical Trial Registration Number: M10545. Impact Statement This study is the first to identify a resting state functional connectivity that distinguishes social anxiety disorder (SAD) from generalized anxiety disorder (GAD) and to clarify a common connectivity in both disorders. We found that the connectivity between the right nucleus accumbens and the right thalamus differentiated SAD from GAD. Furthermore, these rsFC differences suggest an underlying basis for fear overgeneralization. Our findings shed light on the pathophysiology of these conditions and could be used as a basis for further studies to improve outcomes for such patients.

16.
Brain Stimul ; 17(5): 975-979, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134207

RESUMEN

BACKGROUND: Deep brain stimulation of the central thalamus (CT-DBS) has potential for modulating states of consciousness, but it can also trigger electrographic seizures, including poly-spike-wave trains (PSWT). OBJECTIVES: To report the probability of inducing PSWTs during CT-DBS in awake, freely-moving mice. METHODS: Mice were implanted with electrodes to deliver unilateral and bilateral CT-DBS at different frequencies while recording electroencephalogram (EEG). We titrated stimulation current by gradually increasing it at each frequency until a PSWT appeared. Subsequent stimulations to test arousal modulation were performed at the current one step below the current that caused a PSWT during titration. RESULTS: In 2.21% of the test stimulations (10 out of 12 mice), CT-DBS caused PSWTs at currents lower than the titrated current, including currents as low as 20 µA. CONCLUSION: Our study found a small but significant probability of inducing PSWTs even after titration and at relatively low currents. EEG should be closely monitored for electrographic seizures when performing CT-DBS in both research and clinical settings.

17.
Nat Sci Sleep ; 16: 1109-1118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100908

RESUMEN

Objective: The thalamus plays a critical role in attentional maintenance. Previous studies have revealed the dysfunction of the thalamus in attention decline after acute sleep deprivation (SD). However, the functional connectivity (FC) between the thalamus subregions and cortical regions underlying attentional impairment after acute SD remains unclear. Here, we aimed to probe the relationship between attentional function and the altered thalamocortical FC after acute SD. Methods: In this study, 25 healthy participants with regular sleep conducted an attentional network test and received a resting-state fMRI scan before and after 24 hours of SD. Then, we analyzed the FC between the thalamus and cerebrum and relationships with attentional function in the enrolled subjects. Results: Our results showed that the participants showed a significantly lower alerting effect, a higher executive effect, and lower accuracy after acute SD. Compared to the rested wakefulness state, we observed decreased FCs between the "somatosensory" thalamic seed and left frontal pole, right frontal pole, left middle temporal gyrus (posterior division), and right middle temporal gyrus (posterior division). Furthermore, the reduced FC between the right middle temporal gyrus and "somatosensory" thalamic seed was negatively associated with the change in orienting effect of the participants. Conclusion: Our findings reveal that the disrupted FC between thalamus subregions and cortical regions may contribute to impaired attention after SD.

18.
Protein Cell ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066574

RESUMEN

The cerebellum is heavily connected with other brain regions, sub-serving not only motor but also non-motor functions. Genetic mutations leading to cerebellar dysfunction are associated with mental diseases, but cerebellar outputs have not been systematically studied in this context. Here, we present three dimensional distributions of 50,168 target neurons of cerebellar nuclei (CN) from wild-type mice and Nlgn3R451C mutant mice, a mouse model for autism. Our results derived from 36 target nuclei show that the projections from CN to thalamus, midbrain and brainstem are differentially affected by Nlgn3R451C mutation. Importantly, Nlgn3R451C mutation altered the innervation power of CN→zona incerta (ZI) pathway, and chemogenetic inhibition of a neuronal subpopulation in the ZI that receives inputs from the CN rescues social defects in Nlgn3R451C mice. Our study highlights potential role of cerebellar outputs in the pathogenesis of autism and provides potential new therapeutic strategy for this disease.

19.
Epilepsia ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052021

RESUMEN

OBJECTIVE: Although >30% of epilepsy patients have drug-resistant epilepsy (DRE), typically those with generalized or multifocal disease have not traditionally been considered surgical candidates. Responsive neurostimulation (RNS) of the centromedian (CM) region of the thalamus now appears to be a promising therapeutic option for this patient population. We present outcomes following CM RNS for 13 patients with idiopathic generalized epilepsy (IGE) and eight with multifocal onsets that rapidly generalize to bilateral tonic-clonic (focal to bilateral tonic-clonic [FBTC]) seizures. METHODS: A retrospective review of all patients undergoing bilateral CM RNS by the senior author through July 2022 were reviewed. Electrodes were localized and volumes of tissue activation were modeled in Lead-DBS. Changes in patient seizure frequency were extracted from electronic medical records. RESULTS: Twenty-one patients with DRE underwent bilateral CM RNS implantation. For 17 patients with at least 1 year of postimplantation follow-up, average seizure reduction from preoperative baseline was 82.6% (SD = 19.0%, median = 91.7%), with 18% of patients Engel class 1, 29% Engel class 2, 53% Engel class 3, and 0% Engel class 4. There was a trend for average seizure reduction to be greater for patients with nonlesional FBTC seizures than for other patients. For patients achieving at least Engel class 3 outcome, median time to worthwhile seizure reduction was 203.5 days (interquartile range = 110.5-343.75 days). Patients with IGE with myoclonic seizures had a significantly shorter time to worthwhile seizure reduction than other patients. The surgical targeting strategy evolved after the first four subjects to achieve greater anatomic accuracy. SIGNIFICANCE: Patients with both primary and rapidly generalized epilepsy who underwent CM RNS experienced substantial seizure relief. Subsets of these patient populations may particularly benefit from CM RNS. The refinement of lead targeting, tuning of RNS system parameters, and patient selection are ongoing areas of investigation.

20.
Elife ; 122024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037771

RESUMEN

Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.


Asunto(s)
Toma de Decisiones , Hipocampo , Corteza Prefrontal , Ritmo Teta , Corteza Prefrontal/fisiología , Toma de Decisiones/fisiología , Ritmo Teta/fisiología , Hipocampo/fisiología , Animales , Masculino , Memoria/fisiología , Interfaces Cerebro-Computador , Humanos , Tálamo/fisiología , Optogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA