Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095204

RESUMEN

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Contaminantes Atmosféricos/química , Mercurio/química , Coque , Catálisis , Cromo/química , Adsorción , Manganeso/química , Compuestos de Manganeso/química , Modelos Químicos
2.
J Environ Sci (China) ; 149: 476-487, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181660

RESUMEN

Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.


Asunto(s)
Cerio , Cobre , Oxidación-Reducción , Tolueno , Tolueno/química , Catálisis , Cobre/química , Cerio/química , Modelos Químicos , Contaminantes Atmosféricos/química
3.
J Environ Sci (China) ; 147: 561-570, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003071

RESUMEN

In the present study, we investigated the influence of surface fluorine (F) on TiO2 for the photocatalytic oxidation (PCO) of toluene. TiO2 modified with different F content was prepared and tested. It was found that with the increasing of F content, the toluene conversion rate first increased and then decreased. However, CO2 mineralization efficiency showed the opposite trend. Based on the characterizations, we revealed that F substitutes the surface hydroxyl of TiO2 to form the structure of Ti-F. The presence of the appropriate amount of surface Ti-F on TiO2 greatly enhanced the separation of photogenerated carriers, which facilitated the generation of ·OH and promoted the activity for the PCO of toluene. It was further revealed that the increase of only ·OH promoted the conversion of toluene to ring-containing intermediates, causing the accumulation of intermediates and then conversely inhibited the ·OH generation, which led to the decrease of the CO2 mineralization efficiency. The above results could provide guidance for the rational design of photocatalysts for toluene oxidation.


Asunto(s)
Fluoruros , Oxidación-Reducción , Titanio , Tolueno , Tolueno/química , Titanio/química , Catálisis , Fluoruros/química , Procesos Fotoquímicos , Modelos Químicos
4.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003076

RESUMEN

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Asunto(s)
Cobalto , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Tolueno , Óxidos/química , Compuestos de Manganeso/química , Catálisis , Cobalto/química , Tolueno/química , Contaminantes Atmosféricos/química
5.
Appl Environ Microbiol ; : e0085624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287397

RESUMEN

Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE: The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39312116

RESUMEN

This work presents a year-long integral study of air quality parameters in Ciudad Real, a small city in the center of Spain, and its influence on the nearby national park, Las Tablas de Daimiel. The study covers meteorological parameters and criteria pollutants such as O3, NO, NO2, SO2, and PM10. Additionally, for each month, a 1-week campaign was performed sampling air in sorbent tubes with 8-h time resolution to analyze anthropogenic volatile organic compounds and the effects of seasons, daytime, and working-weekend days. During these campaigns, 24-h PM2.5 samples were also collected to measure the load of bacteria and fungi, as well as the trace concentrations of elements.The city and the national park NOx profiles showed that emissions from the town had a non-perceivable effect on the protected area. PM10 levels in Ciudad Real were influenced by Saharan intrusions, as was the national park; however, Ciudad Real had a higher contribution from anthropogenic sources. Ozone levels were lower in the city during the cold season due to the higher concentration of NOx and have not changed significantly in the last decade.The VOCs with higher average concentrations were toluene, m,p-xylene, benzene, methylene chloride, and o-xylene, with traffic being the main source of these pollutants in the city. For benzene and carbon tetrachloride levels, weak carcinogenic risks were estimated. In PM2.5, the most abundant metals were Na, Zn, Mg, Ca, Al, Fe, and K. The carcinogenic and non-carcinogenic risks estimated from the levels of the studied metals were negligible. Bacterial and fungal counts positively correlated with the concentration of PM2.5. Microbial community composition showed seasonal variability, with the dominance of human pathogenic bacteria which correlated with certain pollutants such as SO2. Bacillus and Cutibacterium were the most abundant genera.

7.
J Environ Manage ; 370: 122562, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305885

RESUMEN

The transport behavior of combined organic pollutants in soil and groundwater has attracted significant attention in recent years. Research on the influence of humic acid (HA) on organic pollutant transport behavior mainly focuses on the study of the mobile phase HA, with less research on the adsorbed phase HA, especially regarding its interaction with combined pollutants. To enhance understanding of the regulation of co-transport and retention of combined pollutants by adsorbed phase HA, in this study, tests were conducted to investigate how toluene (TOL) and dichloromethane (DCM) are transported in the presence of adsorbed phase HA at different pH levels and ionic strengths. As the proportions of HA-coated sand increased, so did its adsorption capacity for TOL and DCM, which can be attributed to adsorbed phase HA providing more adsorption sites compared to plain sand, thereby reducing the transport potential of the pollutants. The presence of both TOL and DCM facilitated their mutual transportation due to competitive adsorption controlled by the adsorbed phase HA content in the porous medium. Furthermore, it was observed that pH levels influenced the transport behavior of TOL and DCM when adsorbed phase HA was present since adsorbed phase HA transformation into mobile phase was regulated by pH levels. The transport patterns can be effectively simulated using the chemical nonequilibrium two-site sorption model in HYDRUS-1D, accurately reflecting the retardation coefficients and transport distances based on model parameters. This work sheds new light on the regulatory role of adsorbed phase HA in TOL and DCM transport under diverse hydrochemical conditions, with implications for accurately depicting the behavior of combined pollutants, optimizing the remediation strategies and improving remediation efficiency in contaminated sites.

8.
Environ Sci Pollut Res Int ; 31(43): 55836-55849, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245673

RESUMEN

In this paper, a modification of g-C3N4 was carried out by combining non-metal doping with the construction of heterojunctions, and a type II heterojunction composite, S/g-C3N4@ß-Bi2O3, was prepared. The phase structure, morphology, elemental composition, valence band structure, and light absorption performance of the photocatalyst were analyzed using characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The performance of the composite photocatalyst in the photocatalytic degradation of gaseous toluene, one of the typical volatile organic compounds (VOCs), under simulated solar light was studied. The effects of preparation conditions, toluene concentration, and recycling on the photocatalytic performance of the composite photocatalyst were investigated. The results show that under the optimal preparation conditions, S/g-C3N4@ß-Bi2O3 achieved a degradation efficiency of 74.0% for 5 ppm toluene after 5 h of light irradiation. Although the degradation efficiency decreased to 61.2% after five cycles, it maintained 83% of its initial activity, indicating good stability of the composite photocatalyst. Free radical quenching experiments demonstrated that h+ was the main active species in the photocatalytic degradation of toluene, followed by ·O2-. Based on all experimental results, the migration law of photo-generated charges was analyzed, and a possible photocatalytic mechanism was proposed. In this study, a new material was obtained for the photocatalytic removal of VOCs by improving the photocatalytic properties of g-C3N4.


Asunto(s)
Tolueno , Tolueno/química , Catálisis , Compuestos Orgánicos Volátiles/química , Bismuto/química , Fotólisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-39318010

RESUMEN

INTRODUCTION: Hypophysitis is a rare inflammatory disorder of the pituitary gland. Symptoms and signs of hypophysitis can be various, progressing insidiously, and its recognition may be challenging. CASE PRESENTATION: We report the clinical history and therapeutic management of a 59-year-old man diagnosed with arginine vasopressin deficiency (AVP-D) due to an infundibulo-neurohypophysitis (INH) that occurred after the patient had inhaled spray film containing toluene. In consideration of the clinical signs and radiological imaging suggestive of INH, therapy with desmopressin and corticosteroids was instituted, with gradual improvement of polyuria and resolution of the radiological features of INH. CONCLUSION: To our knowledge, we described the first case of INH, manifested with AVP-D, secondary to toluene exposure. In addition, the endocrine effects of toluene inhalation were discussed. Finally, given the scarcity of data available, an overview of all the known toxic substances inducing AVP-D was also provided.

10.
Angew Chem Int Ed Engl ; : e202415542, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324233

RESUMEN

Liquid organic hydrogen carriers (LOHCs) are attractive platform molecules that play an important role in hydrogen energy storage and utilization. The multi-step hydrogenation of toluene (TOL) to methylcyclohexane (MCH) has been widely studied in the LOCHs systems,  noble metal catalysts such as Ru has exhibited good performance in multi-step hydrogenation reactions, while the application is still hindered by their high cost and low specific activity. In this study, a series of Ru species were fabricated to investigate their structural evolution in the TOL multi-step hydrogenation reaction. The fully exposed and atomically dispersed Ru clusters, composed of an average of 3 Ru atoms, exhibit superior catalytic performance in TOL multi-step hydrogenation. Moreover, it delivers a high turnover frequency of 9850.3 h-1 under the relatively mild reaction, compared with those of single atoms and nanoparticles, and shows a notable advantage over catalysts reported in previous studies. From density functional theory calculations, the overall barrier of the TOL multi-step hydrogenation reaction over the fully exposed Ru clusters is lower than that of single atoms and nanoparticles, resulting in higher activity. This work provides an efficient strategy to regulate the reaction pathway of multi-step complicated catalytic reactions by designing fully exposed metal cluster catalysts.

11.
Chemosphere ; 366: 143409, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326714

RESUMEN

An effective approach for the elimination of indoor gaseous toluene through photocatalytic oxidation involves the engineering of surface defects on catalysts. In this study, the concentrations of surface oxygen defects in PdTi-xN (x = 10, 30) catalysts were controlled using the sodium borohydride solid-phase reduction method, and their performances in the photocatalytic oxidation of indoor gaseous toluene were evaluated. PdTi-10 N demonstrated high photocatalytic efficiency for toluene oxidation, achieving 84% toluene conversion and approximately 75% CO2 mineralization. Characterization results indicated that surface oxygen defects can enhance the separation of photo-generated electrons and holes, facilitating their interaction with Pd0 species to form Ti3+ species. More reactive oxygen species (·OH-and ·O2-) were generated on PdTi-10 N due to the synergistic effect of surface oxygen defect and Ti3+ species, which played a significant role as the toluene oxidation. This work provides a new insight for the design and development of high-performance Pd/TiO2 catalysts in the field of indoor VOCs treatment.

12.
J Hazard Mater ; 480: 135973, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39342856

RESUMEN

Fifty-two laboratory experiments are undertaken to analyze the sensitivity of spectral induced polarization (SIP) to the presence of toluene in soils. Among these experiments, four experiments are conducted to collect SIP responses of soils containing dissolved phase toluene within the pore water using columns. The results demonstrate that SIP is not sensitive to the presence of dissolved phase toluene in soils. The remaining forty-eight experiments are undertaken with four types of soils mixed with non-aqueous phase toluene. The experimental results prove that SIP is sensitive to toluene saturation under varying salinity conditions. These observations are well-explained by a published petrophysical model accounting for the effects of water saturation on complex conductivity. The water saturation exponent n and quadrature conductivity exponent p in this model are obtained by fitting complex conductivity data versus saturation at different saturation levels. The petrophysical model is tested where in-phase and quadrature conductivity responses are predicted from water saturation, soil cation exchange capacity (CEC), and pore water conductivity. The petrophysical model provides satisfactory predictions for non-aqueous phase toluene saturation. Overall, this study contributes to our understanding of SIP as a non-intrusive tool for characterizing toluene contamination in soils with applications to the field.

13.
Methods Mol Biol ; 2851: 97-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210174

RESUMEN

Fishy odor of fish flesh (meat) presents a severe problem for marine production. The main cause of fishy odor is trimethylamine (TMA), which increases during storage. It is produced from trimethylamine oxide (TMAO), an osmosis-regulating substance in fish cells that functions by a reduction reaction. Bacterial growth in fish meat increases TMA. Its odor reduces the commercial value of the meat. Technologies for its regulation and elimination are desired. This chapter presents a description of the use of lactic acid to eliminate TMA. The lactic acid is producible safely by bacteria during food processing using picric acid-toluene.A method of eliminating TMA was demonstrated using Lactobacillus plantarum H78. Furthermore, an assay method was explained for reducing TMA in fish meat by fermenting the H78 strain.


Asunto(s)
Explotaciones Pesqueras , Metilaminas , Metilaminas/metabolismo , Animales , Odorantes/análisis , Manipulación de Alimentos/métodos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Fermentación , Microbiología de Alimentos , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Peces/microbiología , Ácido Láctico/metabolismo , Alimentos Marinos/microbiología
14.
Toxics ; 12(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39195639

RESUMEN

This study utilized activated carbon fibers (ACFs) as adsorbents to investigate the removal efficiency of naphthalene and toluene at elevated temperatures and their competitive adsorption behavior. Three types of ACFs, inlet concentrations of naphthalene (343, 457, and 572 mg·Nm-3), and toluene (2055, 2877, and 4110 mg·Nm-3) were investigated to determine the adsorption capacities of naphthalene and toluene. To study the reaction mechanisms of naphthalene and toluene on the ACFs, the BET, SEM, FTIR, and TGA methods were used to examine the physical and chemical characteristics of ACFs. Results showed ACF-A's superior adsorption capacity for naphthalene that was attributed to its mesoporous structure and hydrophobicity. Adsorption equilibrium studies indicated multilayer adsorption behavior. Competitive adsorption experiments demonstrated the displacement of toluene by naphthalene on ACF-A, highlighting its higher selectivity for naphthalene. Functional group analysis revealed changes in ACF surfaces after naphthalene adsorption, suggesting π-π dispersion and electron donor-acceptor interactions. Overall, this study underscores the importance of pore structure and surface properties in designing ACFs for the efficient adsorption of high-boiling-point organic pollutants.

15.
Environ Sci Technol ; 58(32): 14329-14337, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088742

RESUMEN

A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.


Asunto(s)
Ozono , Tolueno , Tolueno/química , Catálisis , Ozono/química , Compuestos Férricos/química , Manganeso/química , Gases/química , Óxidos/química , Óxidos de Nitrógeno/química , Oxidación-Reducción
16.
Environ Sci Technol ; 58(33): 14906-14917, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39104092

RESUMEN

Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe-S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe-S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.


Asunto(s)
Oxidación-Reducción , Oxígeno , Tolueno , Catálisis , Tolueno/química , Oxígeno/química , Compuestos Orgánicos Volátiles/química , Cobalto/química , Óxidos/química
17.
ChemSusChem ; : e202401071, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166717

RESUMEN

The direct one-step hydrogenation of toluene to methylcyclohexane facilitated by a proton-exchange membrane water electrolyzer driven by renewable energy has garnered considerable attention for stable hydrogen storage and safe hydrogen transportation. However, a persistent challenge lies in the crossover of toluene from the cathode to the anode chamber, which deteriorates the anode and decreases its energy efficiency and lifetime. To address this challenge, the catalyst-poisoning mechanism is systematically investigated using IrO2 and high-entropic non-noble-metal alloys as anodes in acidic electrolytes saturated with toluene and toluene-oxidized derivatives, such as benzaldehyde, benzyl alcohol, and benzoic acid. Benzoic acid plays an important role in polymer-like carbon-film formation by blocking the catalytically active sites on the anode surface. Moreover, Nb and the highly entropic state on the surface of the multi-element alloy lower the adsorbing ability of toluene and prevent polymer-like carbon film formation. This study contributes to the design of catalyst-poisoning-resistant anodes for organic hydride technology, advanced fuel cells, and batteries.

18.
Membranes (Basel) ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39195417

RESUMEN

The separation ability of bis(triethoxysilyl)ethane (BTESE) membranes for hydrogen (H2) purification from hydrogen (H2)/toluene (TOL) gas mixtures after a methylcyclohexane (MCH) dehydrogenation process was investigated via one-stage and two-stage membrane processes. This study revealed that BTESE membranes of varied pore sizes (0.4, 0.5, and 0.7 nm) in a one-stage configuration can manage to achieve a H2 purity ~99.9%. However, the TOL concentrations fell within a wide range, ranging from 280 to 5441 ppm. A primary goal of this research was to lower the TOL concentration in the permeate stream below 200 ppm. Hence, by applying the two-stage membrane, it was demonstrated that the TOL concentration in the permeate stream could be lowered below 200 ppm.

19.
Sci Total Environ ; 951: 175842, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39214362

RESUMEN

This study employed rice husks (RH), corn stalks (CS), and camphor leaves (CL) as biomass sources to prepare iron-loaded biochar catalysts, elucidating the key relationships between these biomass materials, their catalytic performance, and their resistance to deactivation in toluene. Experimental results indicated that the carbon deposits in the three spent catalysts are primarily composed of inert carbon (Cγ). The carbon peaks in these deposits primarily consisted of CO, CC, and CO structures, with varying proportions across the different types of spent catalysts. Specifically, the RH spent catalyst exhibited the highest relative content of the CO structure at 13.49 %, the CS spent catalyst showed the highest relative content of the CC structure at 89.19 %, and the CL spent catalyst displayed the highest relative content of the CO structure at 5.57 %. Fe2+ was the predominant species on the surfaces of all three spent catalysts, accounting for over 50 % in each case. Fe3C was detected on the surfaces of the CS and CL spent catalysts but was absent on the RH spent catalyst. After 80 min of reaction, the carbon deposition rate of the CL catalyst was 8.15 %, with a catalytic cracking efficiency of 28.04 %, making it the most effective overall. This effectiveness was attributed to the CL catalyst's highest oxygen vacancy intensity, where the abundant oxygen source effectively promoted the catalytic reaction of toluene and inhibited carbon deposition. After three consecutive regeneration cycles, the catalytic cracking efficiency of the CL catalyst remained above 70 %, demonstrating strong cyclic regeneration performance. This study provides theoretical insights into the effective utilization of agricultural and forestry waste, contributing to environmental protection.

20.
Environ Pollut ; 361: 124823, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197649

RESUMEN

Toluene is a pollutant frequently detected in contaminated groundwater, mostly due to leakage from underground gasoline storage tanks and pipeline ruptures. Multi-element compound-specific isotope analysis provides a framework to understand transformation processes and design efficient remediation strategies. In this study, we enriched an anaerobic bacterial culture derived from a BTEX-contaminated aquifer that couples toluene and phenol oxidation with nitrate reduction and the concomitant production of carbon dioxide and biomass. The 16S rRNA gene amplicon data indicated that the toluene-degrading consortium was dominated by an Aromatoleum population (87 ± 2 % relative abundance), and metagenome sequencing confirmed that the genome of this Aromatoleum sp. encoded glycyl-radical enzyme benzylsuccinate synthase (BssABC) and phenylphospate synthase (PpsA1BC) homologous genes involved in the first step of toluene and phenol transformation, respectively. Carbon and hydrogen isotopic fractionation were εbulk, C = - 3.5 ± 0.6 ‰ and εrp, H = - 85 ± 11 ‰, respectively, leading to a dual C-H isotope slope of ΛH/C = 26 ± 2. This value fits with a previously reported value for a consortium dominated by an Azoarcus species (ΛH/C = 19 ± 5) but differs from that reported for Aromatoleum aromaticum (ΛH/C = 14 ± 1), both of which grow with toluene under nitrate-reducing conditions. Overall, this suggests the existence of different BssABC enzymes with different mechanistic motifs even within the same Aromatoleum genus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA