Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495650

RESUMEN

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Asunto(s)
Enfermedad de Chagas , Enfermedades Transmisibles , Trypanosoma cruzi , Femenino , Animales , Ratones , Humanos , Trypanosoma cruzi/metabolismo , Pepsina A/metabolismo , Parasitemia , Modelos Animales de Enfermedad , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedad de Chagas/parasitología , Mucinas
2.
Proteins ; 91(10): 1444-1460, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37323089

RESUMEN

Trans-sialidase (TS) superfamily of proteins comprises eight subgroups, being the proteins of Group-I (TS-GI) promising immunogens in vaccine approaches against Trypanosoma cruzi. Strikingly, TS-GI antigenic variability among parasite lineages and their influence on vaccine development has not been previously analyzed. Here, a search in GenBank detects 49 TS-GI indexed sequences, whereas the main infecting human different parasite discrete typing units (DTU) are represented. In silico comparison among these sequences indicate that they share an identity above 92%. Moreover, the antigenic regions (T-cell and B-cell epitopes) are conserved in most sequences or present amino acid substitutions that scarcely may alter the antigenicity. Additionally, since the generic term TS is usually used to refer to different immunogens of this broad family, a further in silico analysis of the TS-GI-derived fragments tested in preclinical vaccines was done to determine the coverage and identity among them, showing that overall amino acid identity of vaccine immunogens is high, but the segment coverage varies widely. Accordingly, strong H-2K, H-2I, and B-cell epitopes are dissimilarly represented among vaccine TS-derived fragments depending on the extension of the TG-GI sequence used. Moreover, bioinformatic analysis detected a set of 150 T-cell strong epitopes among the DTU-indexed sequences that strongly bind human HLA-I supertypes. In all currently reported experimental vaccines based on TS-GI fragments, mapping these 150 epitopes showed that they are moderately represented. However, despite vaccine epitopes do not present all the substitutions observed in the DTUs, these regions of the proteins are equally recognized by the same HLAs.  Interestingly, the predictions regarding global and South American population coverage estimated in these 150 epitopes are similar to the estimations in experimental vaccines when the complete sequence of TS-GI is used as an antigen. In silico prediction also shows that a number of these MHC-I restricted T-cell strong epitopes could be also cross-recognized by HLA-I supertypes and H-2Kb or H-2Kd backgrounds, indicating that these mice may be used to improve and facilitate the development of new TS-based vaccines and suggesting an immunogenic and protective potential in humans. Further molecular docking analyses were performed to strengthen these results. Taken together, different strategies that would cover more or eventually fully of these T-cell and also B-cell epitopes to reach a high level of coverage are considered.


Asunto(s)
Trypanosoma cruzi , Ratones , Humanos , Animales , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Epítopos de Linfocito B/genética , Simulación del Acoplamiento Molecular , Glicoproteínas/metabolismo
3.
Acta Trop ; 241: 106889, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893830

RESUMEN

Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Femenino , Animales , Ratones , Administración Intranasal , Inmunidad Mucosa , Ganglios Linfáticos , Enfermedad de Chagas/prevención & control , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Inmunoglobulina G , Ratones Endogámicos BALB C
4.
Vaccine ; 40(15): 2311-2323, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35279330

RESUMEN

The new generation of vaccines for Chagas disease, are focused to induce both humoral and cellular response to effectively control Trypanosoma cruzi parasites. The administration of vaccine formulations intranasally has the advantage over parenteral routes that can induce a specific response at mucosal and systemic levels. This study aimed to evaluate and compare the immunogenicity and prophylactic effectiveness of two Trans-sialidase (TS)-based mucosal vaccines against T. cruzi administered intranasally. Vaccines consisted of a recombinant fragment of TS expressed in Lactococcus lactis formulated in two different adjuvants. The first, was an immunostimulant particle (ISPA, an ISCOMATRIX-like adjuvant), while the second was the dinucleotide c-di-AMP, which have shown immunostimulant properties at the mucosal level. BALB/c mice were immunized intranasally (3 doses, one every two weeks) with each formulation (TS + ISPA or TS + c-di-AMP) and with TS alone or vehicle (saline solution) as controls. Fifteen days after the last immunization, both TS + ISPA or TS + c-di-AMP induced an evident systemic humoral and cellular response, as judged by the increased plasma anti-TS IgG2a titers and IgG2a/IgG1 ratio and enhanced cellular response against TS. Plasma derived antibodies from TS + c-di-AMP also inhibit in vitro the invasion capacity of T. cruzi. Furthermore, specific secretory IgA was more enhanced in TS + c-di-AMP group. Protective efficacy was proved in vaccinated animals by an oral T. cruzi-challenge. Parasitemia control was only achieved by animals vaccinated with TS + c-di-AMP, despite all vaccinates groups showed enhanced CD8+IFN-γ+ T cell numbers. In addition, it was reflected during the acute phase in a significant reduction of tissue parasite load, clinical manifestations and diminished tissue damage. The better prophylactic capacity elicited by TS + c-di-AMP was related to the induction of neutralizing plasma antibodies and augmented levels of mucosal IgA since TS + ISPA and TS + c-di-AMP groups displayed similar immunogenicity and CD8+IFN-γ+ T-cell response. Therefore, TS + c-di-AMP formulation appears as a promising strategy for prophylaxis against T. cruzi.


Asunto(s)
Enfermedad de Chagas , Vacunas Antiprotozoos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/prevención & control , Fosfatos de Dinucleósidos , Glicoproteínas , Inmunización , Ratones , Ratones Endogámicos BALB C , Neuraminidasa
5.
mBio ; 13(1): e0347821, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073735

RESUMEN

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Animales , Ratones , Trypanosoma cruzi/genética , Parásitos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Enfermedad de Chagas/parasitología , Neuraminidasa , Mucinas/metabolismo , Factores de Virulencia , Mamíferos/metabolismo
6.
Front Cell Infect Microbiol ; 11: 768450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765570

RESUMEN

Chagas' disease is caused by the protozoan Trypanosoma cruzi, described in the early 20th century by the Brazilian physician Dr. Carlos Chagas. There was a great amount of research devoted to diagnosis, treatment and prevention of the disease. One of the most important discoveries made since then, impacting the understanding of how the parasite interacts with the host's immune system, was the description of trans-sialidase. It is an unique enzyme, capable of masking the parasite's presence from the host, while at the same time dampening the activation of CD8+ T cells, the most important components of the immune response. Since the description of Chagas' disease in 1909, extensive research has identified important events in the disease in order to understand the biochemical mechanism that modulates T. cruzi-host cell interactions and the ability of the parasite to ensure its survival. The importance of the trans-sialidase enzyme brought life to many studies for the design of diagnostic tests, drugs and vaccines. While many groups have been prolific, such efforts have encountered problems, among them: the fact that while T. cruzi have many genes that are unique to the parasite, it relies on multiple copies of them and the difficulty in providing epitopes that result in effective and robust immune responses. In this review, we aim to convey the importance of trans-sialidase as well as to provide a history, including the initial failures and the most promising successes in the chasing of a working vaccine for a disease that is endemic in many tropical countries, including Brazil.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Enfermedad de Chagas/prevención & control , Glicoproteínas , Humanos , Neuraminidasa
7.
Front Cell Infect Microbiol ; 11: 671104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295832

RESUMEN

Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.


Asunto(s)
Enfermedad de Chagas , Células Supresoras de Origen Mieloide , Vacunas Antiprotozoos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/prevención & control , Glicoproteínas , Ratones , Neuraminidasa
8.
Med Chem ; 17(7): 724-731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32370720

RESUMEN

BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, represents a worldwide epidemiological, economic, and social problem. In the last decades, the trans-sialidase enzyme of Trypanosoma cruzi has been considered an attractive target for the development of new agents with potential trypanocidal activity. OBJECTIVE: In this work, the aim was to find new potential non-sugar trans-sialidase inhibitors using benzoic acid as a scaffold. METHODS: A structure-based virtual screening of the ZINC15 database was carried out. Additionally, the enzyme and trypanocidal activity of the selected compounds was determined. RESULTS: The results of this work detected 487 compounds derived from benzoic acid as potential transsialidase inhibitors with a more promising binding energy value (< -7.7 kcal/mol) than the known inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). In particular, two lead compounds, V1 and V2, turned out to be promising trans-sialidase inhibitors. Even though the trypanocidal activity displayed was low, these compounds showed trans-sialidase inhibition values of 87.6% and 29.6%, respectively. CONCLUSION: Structure-based virtual screening using a molecular docking approach is a useful method for the identification of new trans-sialidase inhibitors.


Asunto(s)
Ácido Benzoico/química , Ácido Benzoico/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Neuraminidasa/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Ácido Benzoico/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Neuraminidasa/química , Neuraminidasa/metabolismo , Conformación Proteica , Termodinámica , Trypanosoma cruzi/efectos de los fármacos , Interfaz Usuario-Computador
9.
Parasitology ; 147(10): 1114-1123, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32466805

RESUMEN

Trypanosoma cruzi, the etiological agent of Chagas disease, releases factors, including antigens from the trans-sialidase (TS) superfamily, which modulate the host immune responses. Tc13 antigens belong to group IV of TSs and are characterized by C-terminal EPKSA repeats. Here, we studied the effect of the Tc13 antigen from the Tulahuén strain, Tc13Tul, on primary cultures of splenocytes from naïve BALB/c mice. Recombinant Tc13Tul increased the percentage of viable cells and induced B (CD19+) lymphocyte proliferation. Tc13Tul stimulation also induced secretion of non-specific IgM and interferon-γ (IFN-γ). The same effects were induced by Tc13Tul on splenocytes from naïve C3H/HeJ mice. In vivo administration of Tc13Tul to naïve BALB/c mice increased non-specific IgG in sera. In addition, in vitro cultured splenocytes from Tc13Tul-inoculated mice secreted a higher basal level of non-specific IgM than controls and the in vitro Tc13Tul stimulation of these cells showed an enhanced effect on IgM and IFN-γ secretion. Our results indicate that Tc13Tul may participate in the early immunity in T. cruzi infection by favouring immune system evasion through B-cell activation and non-specific Ig secretion. In contrast, as IFN-γ is an important factor involved in T. cruzi resistance, this may be considered a Tc13Tul effect in favour of the host.


Asunto(s)
Antígenos de Protozoos/inmunología , Glicoproteínas/inmunología , Neuraminidasa/inmunología , Bazo/parasitología , Trypanosoma cruzi/inmunología , Animales , Inmunoglobulina G , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes , Bazo/inmunología , Trypanosoma cruzi/enzimología
10.
ACS Infect Dis ; 5(11): 1813-1819, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31538468

RESUMEN

trans-Sialidase and cruzipain are important virulence factors from Trypanosoma cruzi, the etiological agent of Chagas disease, that have highly antigenic domains in their structure and were reported as potential tools for diagnosis of the illness. The aim of the present study is to assess the possibility of using cruzipain and the catalytic domain of trans-sialidase in a Surface Plasmon Resonance-based immunosensor for the diagnosis of chronic Chagas disease. Immunoassays carried out with canine sera verified that cruzipain allows the detection of anti-Trypanosoma cruzi antibodies whereas recombinant trans-sialidase did not yield specific detections, due to the high dilutions of serum used in the immunoassays that hinder the possibility to sense the specific low titer antibodies. The developed cruzipain-based biosensor, whose price per assay is comparable to a commercial enzyme-linked immunosorbent assay (ELISA), was successfully applied for the rapid quantification of specific antibodies against Trypanosoma cruzi in fresh human sera showing an excellent agreement with ELISA.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Trypanosoma cruzi/aislamiento & purificación , Animales , Enfermedad de Chagas/sangre , Enfermedad de Chagas/parasitología , Cisteína Endopeptidasas/análisis , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Enfermedades de los Perros/sangre , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Perros , Glicoproteínas/análisis , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Neuraminidasa/análisis , Neuraminidasa/genética , Neuraminidasa/inmunología , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunología , Factores de Virulencia/sangre , Factores de Virulencia/genética , Factores de Virulencia/inmunología
11.
Carbohydr Res ; 478: 33-45, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31054381

RESUMEN

Trypanosoma cruzi trans-sialidase (TcTS) is a cell surface protein that participates in the adhesion and invasion mechanisms of the parasite into the host cells, making it an attractive target for inhibitors design. In order to contribute to the knowledge of the interaction between TcTS and their acceptor substrates, we designed and synthesized a library of 20 benzyl lactosides substituted in C-6 of the glucose residue with a series of 1,2,3-triazole derivatives containing different aromatic substituents in the C-4 position. The library was prepared by alkyne-azide cycloaddition reaction catalyzed by Cu(I) ("click chemistry") between a benzyl ß-lactoside functionalized with an azide group in the C-6 position and a series of 2-propargyl phenyl ethers. Herein we analyzed the chromatographic behavior on high performance anion exchange chromatography (HPAEC) of the triazoyl-lactose derivatives and their activity as acceptors of TcTS and inhibitors of the sialylation of N-acetyllactosamine. The triazoyl derivatives were obtained with excellent yields and all of them behaved as moderate alternative substrates. The presence of bulky hydrophobic substituents dramatically increased the retention times in HPAEC but did not affect significantly their acceptor properties toward TcTS.


Asunto(s)
Amino Azúcares/antagonistas & inhibidores , Glicoproteínas/metabolismo , Glicósidos/farmacología , Neuraminidasa/metabolismo , Trypanosoma cruzi/enzimología , Amino Azúcares/metabolismo , Conformación de Carbohidratos , Glicoproteínas/química , Glicósidos/síntesis química , Glicósidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Neuraminidasa/química , Especificidad por Sustrato
12.
Methods Mol Biol ; 1955: 135-146, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30868524

RESUMEN

Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.


Asunto(s)
Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Animales , Western Blotting/métodos , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente/métodos , Interacciones Huésped-Parásitos , Humanos , Redes y Vías Metabólicas , Coloración y Etiquetado/métodos , Trypanosoma cruzi/enzimología
13.
Methods Mol Biol ; 1955: 239-246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30868532

RESUMEN

The trans-sialidase (TS), a virulence factor expressed on the surface of Trypanosoma cruzi, the agent of Chagas disease, is an enzyme that transfers sialic acids between glycoconjugates. In humans and most tested mammals, the onset of the chronic phase of T. cruzi infection correlates with the elicitation of antibodies directed to the TS catalytic domain, which inhibit the sialyl residues transfer reaction in vitro and in vivo. The method described here, termed trans-sialidase inhibition assay (TIA), enables the detection of TS-neutralizing antibodies in serum samples of different mammalian species, without the use of conjugated secondary reagents. The high specificity and exquisite sensitivity displayed by the TIA allow to overcome the limitations of routinely used Chagas disease serodiagnostic assays.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/inmunología , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/inmunología , Glicoproteínas/inmunología , Neuraminidasa/inmunología , Trypanosoma cruzi/enzimología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/sangre , Pruebas de Enzimas/métodos , Humanos , Proteínas Recombinantes/inmunología , Trypanosoma cruzi/inmunología , Factores de Virulencia/inmunología
14.
Front Immunol ; 10: 164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787935

RESUMEN

The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.


Asunto(s)
Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Ácido N-Acetilneuramínico/metabolismo , Trypanosoma cruzi/fisiología , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Glicoproteínas/metabolismo , Humanos , Evasión Inmune , Inmunomodulación , Terapia Molecular Dirigida , Mucinas/metabolismo , Neuraminidasa/metabolismo , Polisacáridos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trypanosoma cruzi/efectos de los fármacos
16.
Front Microbiol ; 9: 2100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258417

RESUMEN

Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.

17.
Eur J Med Chem ; 156: 252-268, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006170

RESUMEN

In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivatives (series B, C and D) were synthesized and molecular docking, TcTS enzyme inhibition and determination of trypanocidal activity were carried out. From four series obtained, compound D-11 had the highest binding affinity value (-11.1 kcal/mol) compared to reference DANA (-7.8 kcal/mol), a natural ligand for TS enzyme. Furthermore, the 3D and 2D interactions analysis of compound D-11 showed a hydrogen bond, π-π stacking, π-anion, hydrophobic and Van der Waals forces with all important amino acid residues (Arg35, Arg245, Arg314, Tyr119, Trp312, Tyr342, Glu230 and Asp59) on the active site of TcTS. Additionally, D-11 showed the highest TcTS enzyme inhibition (86.9% ±â€¯5) by high-performance ion exchange chromatography (HPAEC). Finally, D-11 showed better trypanocidal activity than the reference drugs nifurtimox and benznidazole with an equal % lysis (63 ±â€¯4 and 65 ±â€¯2 at 10 µg/mL) and LC50 value (52.70 ±â€¯2.70 µM and 46.19 ±â€¯2.36 µM) on NINOA and INC-5 strains, respectively. Therefore, D-11 is a small-molecule with potent TcTS inhibition and a strong trypanocidal effect that could help in the development of new anti-Chagas agents.


Asunto(s)
Glicoproteínas/antagonistas & inhibidores , Neuraminidasa/antagonistas & inhibidores , Propionatos/química , Propionatos/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Aminación , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Diseño de Fármacos , Glicoproteínas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Neuraminidasa/metabolismo , Relación Estructura-Actividad
18.
Curr Top Med Chem ; 18(5): 382-396, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29741138

RESUMEN

Chagas disease is still a worldwide threat, with estimated 6 to 7 million infected people, mainly in Latin America. Current treatments still rely only on benznidazol and nifurtimox, drugs with poor efficacy in chronic infection phase and recognized toxicity. Thus, there is an urgent need for new therapeutic agents against this disease. In this review we present an updated selection over the last decade of synthetic glycoconjugates as anti-trypanosomal agents, properly addressed as monosaccharideand disaccharide-based agents, and multivalent-based derivatives, disclosing relevant methods for their synthesis, along with their activities on T. cruzi and its trans-sialidase (TcTS). In addition, synthetic glycoconjugates as potential vaccines and diagnostic antigens against T. cruzi are also reported.


Asunto(s)
Glicoconjugados/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Glicoconjugados/síntesis química , Glicoconjugados/química , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Tripanocidas/síntesis química , Tripanocidas/química
19.
Molecules ; 22(11)2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084172

RESUMEN

Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19) sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50) was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans-sialidase enzyme and a binding model similar to DANA (pattern A).


Asunto(s)
Benzoatos/farmacología , Inhibidores Enzimáticos/farmacología , Glicoproteínas/química , Neuraminidasa/química , Tripanocidas/farmacología , Animales , Benzoatos/síntesis química , Benzoatos/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glicoproteínas/antagonistas & inhibidores , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuraminidasa/antagonistas & inhibidores , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/efectos de los fármacos
20.
Bioorg Med Chem ; 25(21): 6049-6059, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29032929

RESUMEN

The synthesis of the O-3 triazole-linked galactosyl arylsulfonamides 1-7 as potential inhibitors of Trypanosoma cruzi cell invasion is described. These target compounds were synthesized by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between different azide arylsulfonamides and the alkyne-based sugar 3-O-propynyl-ßGalOMe. Inhibition assays of T. cruzi cell invasion with compounds 1-7 showed reduced values of infection index (∼20) for compounds 3 and 5, bearing the corresponding 5-methylisoxazole and 2,4-dimethoxypyrimidine groups, which also presented higher binding affinities to galectin-3 (EC50 17-18 µM) in Corning Epic label-free assays. In agreement with experimental results, the assessment of the theoretical binding of compounds 1-7 to galectin-3 by MM/PBSA method displayed higher affinities for compounds 3 (-9.7 kcal/mol) and 5 (-11.1 kcal/mol). Overall, these achievements highlight compounds 3 and 5 as potential T. cruzi cell invasion blockers by means of a galectin-3 binding-related mechanism, revealing galectin-3 as an important host target for design of novel anti-trypanosomal agents.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Galectina 3/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Proteínas Sanguíneas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Fibroblastos/parasitología , Galactosa/química , Galactosa/farmacología , Galectinas , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Haplorrinos , Humanos , Estructura Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Triazoles/química , Triazoles/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA