Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(5): e0076423, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38722162

RESUMEN

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Asunto(s)
Antibacterianos , Bacillus subtilis , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Streptomyces , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Policétidos/farmacología , Policétidos/metabolismo , Glicósidos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Proteómica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo
2.
mBio ; : e0226223, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37850732

RESUMEN

Among the 16 two-component systems in the opportunistic human pathogen Staphylococcus aureus, only WalKR is essential. Like the orthologous systems in other Bacillota, S. aureus WalKR controls autolysins involved in peptidoglycan remodeling and is therefore intimately involved in cell division. However, despite the importance of WalKR in S. aureus, the basis for its essentiality is not understood and the regulon is poorly defined. Here, we defined a consensus WalR DNA-binding motif and the direct WalKR regulon by using functional genomics, including chromatin immunoprecipitation sequencing, with a panel of isogenic walKR mutants that had a spectrum of altered activities. Consistent with prior findings, the direct regulon includes multiple autolysin genes. However, this work also revealed that WalR directly regulates at least five essential genes involved in lipoteichoic acid synthesis (ltaS): translation (rplK), DNA compaction (hup), initiation of DNA replication (dnaA, hup) and purine nucleotide metabolism (prs). Thus, WalKR in S. aureus serves as a polyfunctional regulator that contributes to fundamental control over critical cell processes by coordinately linking cell wall homeostasis with purine biosynthesis, protein biosynthesis, and DNA replication. Our findings further address the essentiality of this locus and highlight the importance of WalKR as a bona fide target for novel anti-staphylococcal therapeutics. IMPORTANCE The opportunistic human pathogen Staphylococcus aureus uses an array of protein sensing systems called two-component systems (TCS) to sense environmental signals and adapt its physiology in response by regulating different genes. This sensory network is key to S. aureus versatility and success as a pathogen. Here, we reveal for the first time the full extent of the regulatory network of WalKR, the only staphylococcal TCS that is indispensable for survival under laboratory conditions. We found that WalKR is a master regulator of cell growth, coordinating the expression of genes from multiple, fundamental S. aureus cellular processes, including those involved in maintaining cell wall metabolism, protein biosynthesis, nucleotide metabolism, and the initiation of DNA replication.

3.
Antibiotics (Basel) ; 12(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37370267

RESUMEN

The emergence of antibiotic-resistant S. aureus has become a major public health concern, necessitating the discovery of new antimicrobial compounds. Given that the skin microbiome plays a critical role in the host defence against pathogens, the development of therapies that target the interactions between commensal bacteria and pathogens in the skin microbiome offers a promising approach. Here, we report the discovery of two bacteriocins, cerein 7B and cerein B4080, that selectively inhibit S. aureus without affecting S. epidermidis, a commensal bacterium on the skin. Our study revealed that exposure of S. aureus to these bacteriocins resulted in mutations in the walK/R two-component system, leading to a thickening of the cell wall visible by transmission electron microscopy and subsequent decreased sensitivity to vancomycin. Our findings prompt a nuanced discussion of the potential of those bacteriocins for selective targeting of S. aureus on the skin, given the emergence of resistance and co-resistance with vancomycin. The idea put forward implies that by preserving commensal bacteria, selective compounds could limit the emergence of resistance in pathogenic cells by promoting competition with remaining commensal bacteria, ultimately reducing chronical infections and limiting the spread of antibiotic resistance.

4.
Vet Res ; 53(1): 83, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224607

RESUMEN

Staphylococcus saprophyticus is frequently involved in various difficult-to-treat infections due to the formation of biofilms. To identify useful antibiofilm strategies, this study explored the efficacy and mechanism of baicalin in enhancing the ability of azithromycin against multidrug-resistant Staphylococcus saprophyticus-Liu-2016-Liyang, China-francolin (MDRSS) biofilms in vitro and in vivo. When azithromycin was used in combination with baicalin, the minimum inhibitory concentration in biofilm (MICB) for azithromycin decreased 4- to 512-fold. Compared with the azithromycin and baicalin groups, the combination of azithromycin and baicalin could not reduce the biofilm biomass, but the dispersion rates of biofilm were decreased and the bactericidal ability was increased. Furthermore, the relative transcript levels of WalK/R system-related genes were upregulated by the addition of baicalin or azithromycin plus baicalin compared with that of the azithromycin and blank control groups. The strong correlation relationship between the WalK/R system and the bactericidal index demonstrated that baicalin enhanced the bactericidal effect of azithromycin on MDRSS biofilms by modulating the WalK/R system. In the mouse cutaneous infection model, the combination of azithromycin and baicalin succeeded in eradicating MDRSS and decreasing pathological injuries. This study indicated that baicalin has the potential to be an adjuvant to enhance the antimicrobial activity of azithromycin against MDRSS in the biofilm form by modulating the WalK/R system.


Asunto(s)
Azitromicina , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Azitromicina/farmacología , Biopelículas , Ratones , Pruebas de Sensibilidad Microbiana/veterinaria , Staphylococcus saprophyticus
5.
J Biol Chem ; 298(10): 102473, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089064

RESUMEN

WalKR is a two-component system that is essential for viability in Gram-positive bacteria that regulates the all-important autolysins in cell wall homeostasis. Further investigation of this essential system is important for identifying ways to address antibiotic resistance. Here, we show that a T101M mutation in walR confers a defect in autolysis, a thickened cell wall, and decreased susceptibility to antibiotics that target lipid II cycle, a phenotype that is reminiscent of the clinical resistance form known as vancomycin intermediate-resistant Staphylococcus aureus. Importantly, this is accompanied by dramatic sensitization to tunicamycin. We demonstrate that this phenotype is due to partial collapse of a pathway consisting of autolysins, AtlA and Sle1, a transmembrane sugar permease, MurP, and GlcNAc recycling enzymes, MupG and MurQ. We suggest that this causes a shortage of substrate for the peptidoglycan biosynthesis enzyme MraY, causing it to be hypersensitive to competitive inhibition by tunicamycin. In conclusion, our results constitute a new molecular model for antibiotic sensitivity in S. aureus and a promising new route for antibiotic discovery.


Asunto(s)
Farmacorresistencia Microbiana , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Farmacorresistencia Microbiana/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Tunicamicina/farmacología
6.
J Adv Res ; 40: 167-178, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100324

RESUMEN

INTRODUCTION: Vancomycin-intermediate Staphylococcus aureus (VISA) is typically associated with a decline in virulence. We previously reported a WalK(S221P) mutation that plays an important role in mediating vancomycin resistance in VISA XN108. Whether this mutation is implicated in bacterial virulence remains unknown. OBJECTIVES: This study aimed to investigate the effect of WalK(S221P) mutation on the virulence of VISA and the underlying mechanism of this effect. METHODS: The influence of WalK(S221P) mutation on VISA virulence and its underlying mechanism were explored using animal models, RNA-seq analysis, RT-qPCR, hemolytic assay, slide coagulase test, Western blot, ß-galactosidase assay, and electrophoresis mobility shift assay (EMSA). RESULTS: Compared with XN108, WalK(S221P)-reverted strain XN108-R exacerbated cutaneous infections with increased lesion size and extensive inflammatory infiltration in mouse models. The bacterial loads of S. aureus XN108-R in murine kidney increased compared with those of XN108. RNA-seq analysis showed upregulation of a set of virulence genes in XN108-R, which exhibited greater hemolytic and stronger coagulase activities compared with XN108. Introduction of WalK(S221P) to methicillin-resistant S. aureus USA300 and methicillin-susceptible strain Newman increased the vancomycin resistance of the mutants, which exhibited reduced hemolytic activities and decreased expression levels of many virulence factors compared with their progenitors. WalK(S221P) mutation weakened agr promoter-controlled ß-galactosidase activity. EMSA results showed that WalK-phosphorylated WalR could directly bind to the agr promoter region, whereas WalK(S221P)-activated WalR reduced binding to the target promoter. Inactivation of agr in S. aureus did not affect their vancomycin susceptibility but mitigated the virulence alterations caused by WalK(S221P) mutation. CONCLUSION: The results of our study indicate that WalK(S221P) mutation can enhance vancomycin resistance in S. aureus of diverse genetic backgrounds. WalK(S221P)- bearing S. aureus strains exhibit reduced virulence. WalK(S221P) mutation may directly impair the activation of the agr system by WalR, thereby decreasing the expression of virulence factors in VISA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Resistencia a la Vancomicina , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Coagulasa/genética , Coagulasa/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Staphylococcus aureus/genética , Resistencia a la Vancomicina/genética , Staphylococcus aureus Resistente a Vancomicina , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/farmacología , beta-Galactosidasa/genética , beta-Galactosidasa/farmacología
7.
Microbiol Spectr ; 10(4): e0168722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913149

RESUMEN

Adaptive laboratory evolution (ALE) is a useful tool to study the evolution of antibiotic tolerance in bacterial populations under diverse environmental conditions. The role of population bottlenecks in the evolution of tolerance has been investigated in Escherichia coli, but not in a more clinically relevant pathogen, methicillin-resistant Staphylococcus aureus (MRSA). In this study, we used ALE to evolve MRSA under repetitive daptomycin treatment and incorporated population bottlenecks following antibiotic exposure. We observed that the populations finally attained a tolerance mutation in the yycH gene after 2 weeks of evolution with population bottlenecks, and additional mutations in yycI and several other genes further increased the tolerance level. The tolerant populations also became resistant to another glycopeptide antibiotic, vancomycin. Through proteomics, we showed that yycH and yycI mutations led to the loss of function of the proteins and downregulated the WalKR two-component system and the downstream players, including the autolysin Atl and amidase Sle1, which are important for cell wall metabolism. Overall, our study offers new insights into the evolution of daptomycin tolerance under population bottlenecking conditions, which are commonly faced by pathogens during infection; the study also identified new mutations conferring daptomycin tolerance and revealed the proteome alterations in the evolved tolerant populations. IMPORTANCE Although population bottlenecks are known to influence the evolutionary dynamics of microbial populations, how such bottlenecks affect the evolution of tolerance to antibiotics in a clinically relevant methicillin-resistant S. aureus (MRSA) pathogen are still unclear. Here, we performed in vitro evolution of MRSA under cyclic daptomycin treatment and applied population bottlenecks following the treatment. We showed that under these experimental conditions, MRSA populations finally attained mutations in yycH, yycI, and several other genes that led to daptomycin tolerance. The discovered yycH and yycI mutations caused early termination of the genes and loss of function of the proteins, and they subsequently downregulated the expression of proteins controlled by the WalKR two-component system, such as Atl and Sle1. In addition, we compared our proteomics data with multiple studies on distinct daptomycin-tolerant MRSA mutants to identify proteins with a consistent expression pattern that could serve as biological markers for daptomycin tolerance in MRSA.


Asunto(s)
Daptomicina , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Daptomicina/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones Estafilocócicas/microbiología
8.
Int J Med Microbiol ; 311(2): 151473, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33445057

RESUMEN

With the treatment failure by vancomycin and poor clinical outcomes, the emergence and spread of vancomycin intermediate-resistant Staphylococcus aureus (VISA) has raised more concerns in recent years. While most VISA strains are isolated from methicillin-resistant S. aureus (MRSA), the mechanism underlying the generation of VISA from methicillin-susceptible S. aureus (MSSA) is still largely unknown. Here, we identified a total of 10 mutations in 9 genes through comparative genome analysis from laboratory-derived VISA strain. We verified the role of a novel mutation of WalK (I237T) and our results further indicated that the introduction of WalK (I237T) by allelic replacement can confer vancomycin resistance in MSSA with common VISA characteristics, including thickened cell walls, reduced autolysis, and attenuated virulence. Consistent with these phenotypes, real-time quantitative reverse transcription-PCR revealed the altered expression of several genes associated with cell wall metabolism and virulence control. In addition, electrophoretic mobility shift assay indicated that WalR can directly bind to the promoter regions of oatA, sle1, and mgt, fluorescence-based promoter activity and ß-galactosidase assays revealed WalK (I237T) can alter promoter activities of oatA, mgt, and sle1, thus regulating genes expression. These findings broaden our understanding of the regulatory network by WalKR system and decipher the molecular mechanisms of developmental VISA resistance in MSSA with point mutations.


Asunto(s)
Genes Bacterianos , Mutación , Staphylococcus aureus/genética , Resistencia a la Vancomicina/genética , Antibacterianos/farmacología , Hibridación Genómica Comparativa , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología
9.
Front Microbiol ; 10: 1882, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474962

RESUMEN

Vancomycin (VAN)-intermediate-resistant Staphylococcus aureus (VISA) is continually isolated globally, with a systematic review suggesting a prevalence of 2% in all blood culture samples. Most VISA strains exhibit common characteristics, such as a thickened cell wall, reduced autolysis, and attenuated virulence. Here, based on multi-omics approaches, we have characterized clinical VISA isolates obtained through prolonged antimicrobial treatment in a single patient. All VISA isolates were isogenic, based on multi-locus sequence typing (MLST) ST5, SCCmec type II (2A), and spa type t17639. Core-genome single nucleotide variations (SNVs) found among thirteen isolates during the patient's hospitalization, indicated clonality, but not notable genetic features of the VISA phenotype. We determined the complete genome sequence of VAN-susceptible strain KG-03 (minimum inhibitory concentration [MIC] 0.5 µg/mL) and two VISA strains, KG-18 and KG-22 (MIC 8.0 and 4.0 µg/mL, respectively). Comparative genome analysis showed remarkable strain-specific IS256 insertions. RNA-Seq transcriptome analysis revealed IS256-mediated overexpression of the walKR two-component system in VISA KG-18, possibly leading to modulation of cell wall integrity (lytM and sceD) and surface charge (mprF and dltABCD). In addition, secretome analysis indicated that cell wall-anchored proteins (Protein A, SasG, and SdrD) were significantly decreased. KG-18 and KG-22 exhibit thickened cell wall, and are relatively resistant to lysostaphin, which cleaves a staphylococcus-unique pentaglycine chain in the peptidoglycan. We conclude that KG-18 achieved reduced susceptibility to VAN by IS256-mediated WalKR overexpression, leading to a markedly thickened cell wall for trapping free VAN molecules with redundant D-Ala-D-Ala targets. In addition, a positively charged surface with lysyl-phosphatidylglycerol and depolarization of wall teichoic acid could contribute to inhibiting cationic daptomycin and VAN antimicrobial activity. Comparative omics approaches in this study strongly suggest that fully complete and annotated genome sequences will be indispensable for characterizing overall VISA phenotype.

10.
Artículo en Inglés | MEDLINE | ID: mdl-30617095

RESUMEN

Coagulase-negative staphylococci (CoNS) represent one of the major causes of health care- and medical device-associated infections. Emerging antimicrobial resistance has complicated the treatment of systemic infections caused by CoNS. Here, we describe the prevalence of antimicrobial resistance in clinical CoNS strains from a tertiary care hospital over a 4-year period, and we observed a significant increase in resistance to daptomycin. Notably, Staphylococcus capitis accounted for the majority of these daptomycin-resistant (DAP-R) CoNS. To further investigate the mechanisms of daptomycin resistance in CoNS, daptomycin-susceptible clinical strains of S. capitis and Staphylococcus epidermidis underwent in vitro daptomycin exposure to generate DAP-R CoNS mutants. Unlike that seen with Staphylococcus aureus, alteration of cell surface charge was not observed in the DAP-R CoNS strains, but biofilm formation was compromised. Whole-genome sequencing analysis of the DAP-R CoNS strains identified single nucleotide polymorphisms (SNPs) in walKR, the essential two-component regulatory system controlling cell wall biogenesis. PCR and sequencing of walK and walR from 17 DAP-R CoNS clinical isolates identified seven nonsynonymous mutations. The results were confirmed by the recreation of the walK SNP in S. epidermidis, which resulted in reduced susceptibility to daptomycin and vancomycin. This study highlights the significance of CoNS in evolving daptomycin resistance and showed that walKR is shared among the staphylococcal species and is involved in antibiotic resistance development. Notably, we did not observe mutations in genes responsible for phospholipid biosynthesis or an altered cell surface charge, suggesting that reduced daptomycin susceptibility in CoNS may emerge in a fashion distinct from that in S. aureus.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Farmacorresistencia Bacteriana/genética , Staphylococcus capitis/genética , Staphylococcus epidermidis/genética , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Infección Hospitalaria/microbiología , Histidina Quinasa/genética , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus capitis/efectos de los fármacos , Staphylococcus capitis/aislamiento & purificación , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/aislamiento & purificación , Centros de Atención Terciaria , Vancomicina/farmacología
11.
Front Microbiol ; 9: 2955, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30546356

RESUMEN

The emergence of vancomycin-intermediate Staphylococcus aureus (VISA) has raised healthcare concerns worldwide. VISA is often associated with multiple genetic changes. However, the relative contributions of these changes to VISA phenotypes are incompletely defined. We have characterized VISA XN108 with vancomycin MIC of 12 µg/ml. Genome comparison revealed that WalK(S221P), GraS(T136I), and RpoB(H481N) mutations possibly contributed to the VISA phenotype of XN108. In this study, the above mutations were stepwise cured, and the phenotypes between XN108 and its derivates were compared. We constructed four isogenic mutant strains, XN108-WalK(P221S) (termed as K65), XN108-GraS(I136T) (termed as S65), XN108-RpoB(N481H) (termed as B65), and XN108-WalK(P221S)/GraS(I136T) (termed as KS65), using the allelic replacement experiments with the native alleles derived from a vancomycin-susceptible S. aureus isolate DP65. Antimicrobial susceptibility test revealed K65 and S65 exhibited decreased vancomycin resistance, whereas B65 revealed negligibly differed when compared with the wild-type XN108. Sequentially introducing WalK(P221S) and GraS(I136T) completely converted XN108 into a VSSA phenotype. Transmission electronic microscopy and autolysis determination demonstrated that cell wall thickening and decreasing autolysis were associated with the change of vancomycin resistance levels. Compared with XN108, K65 exhibited 577 differentially expressed genes (DEGs), whereas KS65 presented 555 DEGs. Of those DEGs, 390 were common in K65 and KS65, including those upregulated genes responsible for citrate cycle and bacterial autolysis, and the downregulated genes involved in peptidoglycan biosynthesis and teichoic acid modification. In conclusion, a VSSA phenotype could be completely reconstituted from a VISA strain XN108. WalK(S221P) and GraS(T136I) mutations may work synergistically in conferring vancomycin resistance in XN108.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA