Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.650
Filtrar
1.
Physiol Rep ; 12(19): e70073, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358836

RESUMEN

In persons with a spinal cord injury (SCI), resistance training using neuromuscular electrical stimulation (NMES-RT) increases lean mass in the lower limbs. However, whether protein supplementation in conjunction with NMES-RT further enhances this training effect is unknown. In this randomized controlled pilot trial, 15 individuals with chronic SCI engaged in 3 times/week NMES-RT, with (NMES+PRO, n = 8) or without protein supplementation (NMES, n = 7), for 12 weeks. Before and after the intervention, whole body and regional body composition (DXA) and fasting glucose and insulin concentrations were assessed in plasma. Adherence to the intervention components was ≥96%. Thigh lean mass was increased to a greater extent after NMES+PRO compared to NMES (0.3 (0.2, 0.4) kg; p < 0.001). Furthermore, fasting insulin concentration and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were decreased similarly in both groups (fasting insulin: 1 [-9, 11] pmol∙L-1; HOMA-IR: 0.1 [-0.3, 0.5] AU; both p ≥ 0.617). Twelve weeks of home-based NMES-RT increased thigh lean mass, an effect that was potentiated by protein supplementation. In combination with the excellent adherence and apparent improvement in cardiometabolic health outcomes, these findings support further investigation through a full-scale randomized controlled trial.


Asunto(s)
Composición Corporal , Terapia por Estimulación Eléctrica , Entrenamiento de Fuerza , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Masculino , Entrenamiento de Fuerza/métodos , Femenino , Adulto , Proyectos Piloto , Terapia por Estimulación Eléctrica/métodos , Persona de Mediana Edad , Suplementos Dietéticos , Resistencia a la Insulina , Insulina/sangre , Proteínas en la Dieta/administración & dosificación , Glucemia/metabolismo , Músculo Esquelético/metabolismo
2.
J Dairy Sci ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369896

RESUMEN

The aim of the study was to obtain hard cheese similar to the rennet hard cheese starting from the fresh white cheese (low and full-fat). This was accomplished with adding a powdered whey protein isolate to the fresh white cheese and heating. Fresh white cheese was produced from full or skim milk and ground with the whey protein isolate powder. The obtained mixture was heated at different temperatures. The increased heating temperature resulted in a more compact product characterized by higher hardness and elasticity compared with the full-fat product. The product approved by the organoleptic analysis panel was obtained by heating the mixed fat white cheese and the powdered whey protein isolate at 80°C for 30 min. The most significant achievement was to obtain in ca. one hour a product similar to that produced in ca. one year that is the hard rennet cheese. It contained ca. 39% wt/wt of protein and can be an interesting offer for dairy industry.

3.
Clin Nutr ; 43(10): 2412-2426, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39303495

RESUMEN

BACKGROUND: The efficacy of whey protein supplement (WPS) in improving muscle strength, physical performance, and body composition in older adults has been widely promoted. However, the results of randomized clinical trials in this regard have been inconsistent. We aimed to determine the impact of WPS, compared to a placebo, during or without training on muscle strength, physical function, and body composition in older adults. METHODS: Randomized controlled trials were thoroughly searched using PubMed, EMBASE, the Cochrane Library Database, and Scopus databases up to June 2024. The analysis focused on key parameters such as handgrip strength (HS), leg press, knee extension, gait speed (GS), 6-min walking test (6MWT), Timed-up and go test (TUG), lean body mass (LBM), fat mass (FM), and appendicular skeletal muscle mass (ASM). A pooled effect size was calculated using a random-effects model based on standardized mean differences (SMD). RESULTS: Thirty studies involving 2105 participants aged 60 and older met the inclusion criteria. The meta-analysis of 26 RCTs showed no significant positive effect of WPS on HS (n = 11, SMD: 0.18; 95% CI: -0.13, 0.49; I2 = 69%), 6MWT (n = 5, SMD: -0.08; 95%CI: -0.31, 0.16; I2 = 0%), GS test (n = 4, SMD: -0.08; 95%CI: -0.43, 0.28; I2 = 36%), TUG test (n = 9, SMD: 0.0, 95% CI -0.15, 0.14; I2 = 0%), LBM (n = 11, SMD: 0.02; 95%CI: -0.13, 0.17; I2 = 0%), FM (n = 15, SMD: -0.04; 95%CI: -0.18, 0.10; I2 = 0%). However, ASM significantly improved after WPS consumption but with high heterogeneity (n = 2, SMD: 0.39; 95%CI: 0.28, 0.51; I2 = 69%). In interventions incorporating RE, statistically significant positive effects of WPS on lower body strength were observed (n = 11, SMD: 0.25; 95%CI: 0.05, 0.45; I2 = 0%). CONCLUSION: The present meta-analysis indicates that WPS, when combined with resistance training (RT), can enhance lower body strength but does not seem to have a significant beneficial effect on handgrip strength, physical performance, or body composition. Further large-scale studies are necessary to confirm these findings and elucidate the potential benefits of WPS in this population.


Asunto(s)
Composición Corporal , Suplementos Dietéticos , Fuerza Muscular , Rendimiento Físico Funcional , Ensayos Clínicos Controlados Aleatorios como Asunto , Proteína de Suero de Leche , Humanos , Proteína de Suero de Leche/administración & dosificación , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Anciano , Masculino , Persona de Mediana Edad , Femenino , Músculo Esquelético/fisiología , Músculo Esquelético/efectos de los fármacos
4.
Membranes (Basel) ; 14(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39330532

RESUMEN

This work proposes an integrated production of whey protein concentrate (WPC) and lactose and the recovery of water from diafiltration (DF) steps. Whey protein and lactose can be concentrated using ultrafiltration and nanofiltration, respectively, and both can be purified using DF. However, DF uses three-fold the initial volume of whey. We propose a method to reclaim this water using reverse osmosis and adsorption by activated carbon. We produced WPC with 88% protein and purified lactose (90%), and 66% of the water can be reclaimed as drinking water. Additionally, the reclaimed water was used to produce another batch of WPC, with no decrease in product quality. Water recovery from the whey process is necessary to meet the needs of a dairy refinery.

5.
Food Chem X ; 23: 101739, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39263336

RESUMEN

Impacts of co-cold extrusion (≤50 °C) of whey protein isolate (WPI) and cysteine (Cys, 0, 20, 40, 60, 80 and 100 mmol/L) on its physicochemical, in vitro digestion and rheological properties were investigated. As Cys concentration increased, the emulsifying properties and in vitro digestibility of co-extruded WPI-Cys products showed an increasing trend. Specifically, when Cys reached 100 mmol/L, surface hydrophobicity, emulsification activity index (EAI), emulsification stability index (ESI) and in vitro stomach digestibility of the co-extruded WPI-Cys products increased by 205.07%, 77.51%, 193.95% and 71.81% compared with WPI, respectively. Principal component analysis (PCA) results further indicated that co-extruded WPI-Cys at a concentration of 100 mmol/L had the best functional properties. In addition, co-extruded WPI-Cys exhibited the strongest Péclet number (Pe) value and apparent viscosity at a Cys concentration of 100 mmol/L among all samples. Therefore, co-extrusion would be an effective method for modifying WPI, providing whey protein-based ingredients with excellent functional properties for food processing.

6.
J Sci Food Agric ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253887

RESUMEN

BACKGROUND: Construction of meat analogs based on pea protein isolate (PPI) alone by high moisture extrusion (HME) is diffocult as a result of the lack of anisotropic structures. In the present study, 0%-15% of whey protein (WP) was introduced to PPI to make hybrid blends, which were used to construct HME extrudates. RESULTS: WP enhanced the hardness, adhesive, cohesiveness and gumminess of the extrudates and facilitated the formation of a distinct anisotropic structure of PPI. The fibrous degrees of the extrudates containing 10% and 15% WP were around 1.50. The addition of WP, which has more -SH groups, increased the disulfide bonds and hydrogen bonding in the extrudates, leading to a denser cross-linked structure. Particle size distribution and Fourier transform infrared analysis showed that WP induced more compact structured aggregates and more ß-sheet structures in the extrudates. Furthermore, the higher hydration capacity of WP may also help form a dilute melt and generate a more pronounced plug flow, assisting the formation of fiber structures of PPI. CONCLUSION: The present study demonstrates that WP is a potential modifier, which could be used to improve the structure of PPI-based meat analogs. © 2024 Society of Chemical Industry.

7.
Food Chem ; 463(Pt 1): 141062, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236389

RESUMEN

Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.

8.
Food Chem ; 463(Pt 1): 141092, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39255696

RESUMEN

A pH-sensitive film was prepared from pectin (P) and whey protein (W), incorporating anthocyanin-rich purple sweet potato extract (PPE) as the pH indicator. The effect of PPE content on the structure and properties of the films and the pH indicating function were determined and evaluated for shrimp freshness and grape preservation. The solubility (60.23 ± 7.36 %) and water vapor permeability (0.15 ± 0.04 × 10-11 g·cm/(cm2·s·Pa)) of the pectin/whey protein/PPE (PW-PPE) film with 500 mg/100 mL PPE were the lowest of the films tested and much lower than PW films without PPE. PW-PPE films were non-cytotoxic and had excellent biodegradability in soil. Grapes coated with PW-PPE film had reduced weight loss from water evaporation, and decay during storage was inhibited. The total color change (ΔE) of the PW-PPE films had a strong linear correlation with the pH of shrimps during storage. PW-PPE films have application potential to monitor the real-time freshness of meat and extend the shelf life of fruit.

9.
Heliyon ; 10(17): e36973, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286073

RESUMEN

Jambolan (Syzygium cumini L.) is an underutilized fruit rich in bioactive phenolic compounds, specially anthocyanins, but the low stability of these substances and interaction with other compounds in the food matrix limit their application as food additives; nanoencapsulation is the best strategy to overcome these limitations. This study aimed to nanoencapsulate a phenolic-rich jambolan extract using whey proteins and pectin by nanoprecipitation in different antisolvent compositions. Two formulations were synthesized (7.33 % extract, 1.67 % pectin, and 5 % concentrated or isolated whey protein) precipitated in different acetone concentrations (50, 70, and 100 % v/v). SEM showed particles with spherical shape and smooth surface. DLS pointed diameters between 82 nm and 116 nm. FTIR indicated chemical interactions between the materials. Encapsulation efficiency showed high phenolic compounds entrapment in all systems [73.81-84.65 %, p > 0.05]. However, particles precipitated in 50 and 100 % acetone (v/v) showed greater anthocyanins retention [56.89-35.24 %, p < 0.05]. Nanoencapsulation potentiated the antioxidant activity up to 110 % more than the crude extract (p < 0.05). These results show the potential of nanoprecipitation as an effective encapsulation process and the biopolymers combination to produce nanoparticles containing jambolan phenolic compounds to promote their application in foods and health products.

10.
Food Chem X ; 23: 101756, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39295963

RESUMEN

Studies have demonstrated the protective effect of milk fat globule membrane (MFGM) on probiotics in harsh environments. However, currently, there are no reports on the encapsulation of probiotics using MFGM. In this study, MFGM and pullulan (PUL) polysaccharide fibers were prepared by electrostatic spinning and used to encapsulate probiotics, with whey protein isolates (WPI)/PUL as the control. The morphology, physical properties, mechanical properties, survival, and stability of the encapsulated Lacticaseibacillus rhamnosus GG (LGG) were studied. The results showed that the MFGM/PUL solution had significant effects on pH, viscosity, conductivity, and stability. Electrostatic spinning improved the mechanical properties and encapsulation ability of the polymer formed by MFGM/PUL. LGG encapsulated in MFGM/PUL nanofibers survived rate was higher than WPI/PUL nanofibers in mimic intestinal juice, which could be attributed to the phospholipid content contained in MFGM. These results demonstrate that MFGM is a promising material for probiotic encapsulation, providing an important basis for the potential use of MFGM/PUL nanofibers as a robust encapsulation matrix.

11.
J Sci Food Agric ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299927

RESUMEN

BACKGROUND: Stimuli-responsive emulsions have garnered significant attention for their ability to enhance sensory qualities and control the release of encapsulated nutrient in emulsion-based products. However, the characteristics of synthetic materials of fabricating stimuli-responsive emulsions have been a crucial limitation in the food industry. Regulating the behavior of molecules at the interface could potentially achieve the desired stimuli-responsive behavior, but currently there is limited information available. RESULTS: High-internal-phase emulsions (HIPEs) were fabricated for the encapsulation of allicin, stabilized by a complex of 20 g kg-1 whey protein amyloid fibrils (WPF) and 20 g kg-1 glycyrrhizin fibers (GA). The intermolecular interactions between WPF and GA in the fiber complexes were predominantly governed by hydrophobic and electrostatic forces. These complexes adsorbed and stacked around the oil droplets, forming a protective interfacial film that enhanced droplet stability. An increased proportion of WPF (WPF = 3:1 or 4:1) surrounding the oil droplets enhanced the accelerated storage stability of HIPEs, with instability indexes approaching 0.2. Additionally, HIPEs displayed a temperature-dependent modulus, with the emulsion stabilized by a WPF ratio of 3:1 showing the highest modulus at 85 °C. The encapsulation efficiency of allicin in HIPEs ranged from 88.69 ± 6.62% to 101 ± 1.37% at 25 °C, and from 31.95 ± 1.92% to 78.69 ± 4.63% after incubation at 85 °C for 8 h. The release profile of allicin from the HIPEs exhibited thermal responsiveness, depending on the interfacial content of GA. CONCLUSION: These findings indicated that the thermal-responsive properties of HIPEs can be strategically engineered by manipulating their interfacial characteristics. © 2024 Society of Chemical Industry.

12.
Int J Biol Macromol ; 280(Pt 1): 135712, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288859

RESUMEN

Probiotics are exposed to a variety of abiotic and biotic stresses during food fermentation and production, such as acidity, heat, osmolality, and oxidation, which affect their metabolic activity and efficiency. Therefore, it is essential to develop new protective agents to maintain the activity and stability of probiotics. This study introduces a new protectant, spray-dried whey protein isolate (WPI) and isomaltose (ISO). We evaluated the effects of four WPI-ISO ratios (1:0, 2:1, 1:1, 1:2) on the physical properties, including moisture content, water activity (aw), wettability, and glass transition temperature. In addition, we evaluated the environmental tolerance of Lactobacillus rhamnosus to different WPI-ISO ratios under thermal, storage, and simulated gastrointestinal conditions. The results showed that the moisture content (< 7 %) and water activity (< 0.3) of the protectant and probiotic powders met storage stability requirements. The moisture content, water activity, wettability index (WI), and glass transition temperature decreased significantly with the addition of isomalt, thereby improving the pressure resistance of L. rhamnosus through the synergistic effect of WPI and ISO. The WPI-ISO protectant not only improved the environmental tolerance and wettability of probiotics by reducing the moisture content and water activity but also significantly improved the survival rate of L. rhamnosus under various stress conditions such as high temperature and gastrointestinal environment. L. rhamnosus maintains good activity with a viable bacterial count of over 9 lg CFU/g after 90 days of storage, demonstrating effective protection against the environment stress. This study provides a promising new strategy to improve the stability of probiotics in the food industry.

13.
J Dairy Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218067

RESUMEN

This study evaluated the impact of thermal, ultrasonication, and UV treatment on the structural and functional properties of whey proteins from donkey milk (DWP). Whey proteins exhibited notable stability in non-heat-treated environments, while their structural and functional characteristics were notably impacted by excessive heat treatment. The application of high-temperature long-time thermal treatment (HTLT) resulted in a decrease in fluorescence intensity, foaming and emulsification stability, and considerable damage to the active components of the proteins. Specifically, the preservation of lysozyme activity was only 23%, and lactoferrin and immunoglobulin G exhibited a significant loss of 70% and 77%, respectively. Non-thermal treatment methods showed superior efficacy in preserving the active components in whey proteins compared with heat treatment. Ultrasonic treatment has demonstrated a notable capability in diminishing protein particle size and turbidity, and UV treatment has been observed to have the ability to oxidize internal disulfide bonds within proteins, consequently augmenting the presence of free sulfhydryl groups, which were beneficial to foaming and emulsification stability. This study not only offers a scientific basis for the processing and application of DWP but also serves as a guide to produce dairy products, aiding in the development of dairy products tailored to specific health functions.

14.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275186

RESUMEN

As older adults tend to reduce their intake of animal-source proteins, plant-source proteins may offer valuable resources for better protein intake. The aim of this study was to assess whether the pea proteins can be used to achieve blood amino acid levels that stimulate muscle protein synthesis. We measured variations in plasma amino acid concentrations in young and older adults given pea (NUTRALYS® S85 Plus) or whey proteins either alone or in a standardized meal. The effect of amino acid concentrations on protein synthesis in C2C12 myotubes was determined. In terms of results, plasma amino acid concentrations reflected the difference between the amino acid contents of whey and pea proteins. Blood leucine showed a greater increase of 91 to 130% with whey protein compared to pea protein, while the opposite was observed for arginine (A greater increase of 147 to 210% with pea compared to whey). Culture media prepared with plasmas from the human study induced age-dependent but not protein-type-dependent changes in myotube protein synthesis. In conclusion, pea and whey proteins have the same qualities in terms of their properties to maintain muscle protein synthesis. Pea proteins can be recommended for older people who do not consume enough animal-source proteins.


Asunto(s)
Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Guisantes , Proteína de Suero de Leche , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Humanos , Masculino , Animales , Anciano , Aminoácidos/sangre , Ratones , Femenino , Adulto , Adulto Joven , Biosíntesis de Proteínas/efectos de los fármacos , Línea Celular , Proteínas Musculares/biosíntesis , Proteínas Musculares/metabolismo , Pisum sativum/química
15.
J Dairy Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245163

RESUMEN

Dairy products, such as whey proteins, have been effectively utilized to enhance the effectiveness of vitamin D fortification and optimize circulating 25(OH)VD levels. Whey protein is rich in L-cysteine (LC) which is the precursor of hydrogen sulfide (H2S), enhances glutathione (GSH) biosynthesis, and promotes positive nitrogen balance. Zucker diabetic rats (ZDF) were used as a model in this study, to examine the hypothesis that LC supplementation enhances blood levels of H2S and nitrite (NO2) while reducing inflammation biomarkers. Rats were gavaged daily (orally) with either saline placebo or L-cysteine along with a high-calorie diet starting at 6 weeks of age. Fasting blood levels showed LC supplementation significantly increased circulatory levels of H2S and NO2 compared with placebo rats. LC supplementation increased plasma concentration of 25(OH)VD and vitamin C and lowered leptin and body weight gain in ZDF rats. Furthermore, to assess the impact of H2S and NO2 in raising 25(OH)VD levels, the in vitro effect of H2S/NO2 on vitamin D metabolism genes was examined using THP-1 monocytes. The exogenous H2S and NO2 treatment upregulated the relative expression of CYP2R1 and CYP27B1 genes in cultured monocytes. This study suggests a potential mechanism for the observed increase in circulating 25(OH)VD levels following L-cysteine supplementation.

16.
BMC Musculoskelet Disord ; 25(1): 704, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227842

RESUMEN

BACKGROUND: As populations live longer, there is a progressive increase in chronic degenerative diseases, particularly those related to the musculoskeletal system. Sarcopenia is characterized by loss of skeletal muscle mass, muscle strength, and loss of physical function. It is a common disease in older adults associated with various adverse health outcomes. There is a lack of bioindicators to screen for sarcopenia. Albumin and lymphocyte counts are commonly used to assess the degree of malnutrition, and blood routine, lipids, and thyroid function are relatively easy to obtain as part of a routine physical examination. Therefore, finding blood markers that can screen for sarcopenia is essential. Our primary aim was to explore whether the bioindicators of body composition, lymphocytes, albumin, lipids, and thyroid hormones are associated with sarcopenia, and a secondary aim was to investigate changes in these indicators after an intensive lifestyle intervention preliminarily. METHODS: 60 subjects were selected from Runda and Bailian community health centers in Suzhou, China. They underwent body composition analysis and tested lymphocyte, albumin, lipid, and thyroid hormone levels. The 30 sarcopenia subjects underwent a 3-month intensive lifestyle intervention program. At the end of the intervention, we rechecked the bioindicators. Statistical analyses were performed in IBM SPSS v26.0. RESULTS: The blood indices of sarcopenia subjects were generally lower in albumin, non-high-density lipoprotein cholesterol (non-HDL-C), and free triiodothyronine (FT3). Body mass index (BMI)(r = 0.6266, p < 0.0001), fat-free mass (r = 0.8110, p < 0.0001), basal metabolism (r = 0.7782, p < 0.0001), and fat mass (r = 0.3916, p = 0.0020) were positively correlated with appendicular skeletal muscle index (ASMI). Higher BMI and FT3 were associated with lower odds of sarcopenia, while higher fat mass was associated with higher odds of sarcopenia. After a 3-month intensive intervention, sarcopenia subjects had a significant increase in BMI, ASMI, lymphocyte, and albumin levels, and an increase in FT3, but with a non-significant difference (p = 0.342). CONCLUSIONS: Low BMI, FT3, and high fat mass were associated with sarcopenia. Intensive lifestyle intervention can significantly improve ASMI, BMI, lymphocytes, albumin, and FT3 in sarcopenia subjects, which is favorable for delaying the progression of sarcopenia. TRIAL REGISTRATION: This study was retrospectively registered on ClinicalTrials.gov, registration number NCT06128577, date of registration: 07/11/2023.


Asunto(s)
Biomarcadores , Composición Corporal , Sarcopenia , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores/sangre , China/epidemiología , Estilo de Vida , Lípidos/sangre , Recuento de Linfocitos , Sarcopenia/sangre , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Sarcopenia/prevención & control
17.
Int J Biol Macromol ; 279(Pt 4): 135322, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236946

RESUMEN

The study aimed to investigating the mechanisms of relieved intestinal barrier damage by dynamic high-pressure microfluidization assisted with galactooligosaccharide- glycated whey protein isolate. The modifications changed the multi-structure, and the modified whey protein isolate could promote the proliferation of IEC-6 cells and contributed to the restoration of LPS-induced occludin damage in IEC-6 cells. Also, it could repair cyclophosphamide-induced ileal villus rupture and crypt destruction in BALB/c mice, significantly altered the abundance of dominant bacteria, which were associated with propionic acid, butyric acid, isovaleric acid, and valeric acid. Ileum transcriptomics revealed that the modified whey protein isolate significantly regulate of the levels of Cstad, Cyp11a1, and Hs6st2 genes, relating to the increase of propionic acid, isovaleric acid, and valeric acid. In conclusion, galactooligosaccharide- modified whey protein isolate could regulate the level of Cstad, Cyp11a1 and Hs6st2 genes by altering the gut microbial structure and the level of SCFAs, thereby repairing the intestinal barrier.

18.
Foods ; 13(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39335906

RESUMEN

Food proteins and peptides are generally considered a source of dietary antioxidants. The aim of this study was to investigate the antioxidant activity, allergenicity, and peptide profiles of whey protein hydrolysates (WPHs) using different hydrolysis methods. The results demonstrated that the degrees of hydrolysis of the hydrolysates with one-step (O-AD) and two-step (T-AD) methods reached 16.25% and 17.64%, respectively. The size exclusion chromatography results showed that the O-AD had a higher content of >5 and <0.3 kDa, and the distribution of peptide profiles for the two hydrolysates was significantly different. Furthermore, 5 bioactive peptides and 15 allergenic peptides were identified using peptidomics. The peptide profiles and the composition of the master proteins of the O-AD and T-AD were different. The DPPH and ABTS radical scavenging abilities of WPHs were measured, and hydrolysates were found to exhibit a strong radical scavenging ability after being treated using different hydrolysis methods. An enzyme-linked immunosorbent assay showed that the sensitization of WPHs was significantly reduced. This study may provide useful information regarding the antioxidant properties and allergenicity of WPHs.

19.
Foods ; 13(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39272503

RESUMEN

Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, NaCl and sucrose on the physicochemical properties of HIPEs were investigated. A novel simulated mayonnaise was then prepared and characterized. Microstructural observation revealed that WPI enveloped oil droplets at the interface, forming a typical O/W emulsion. Increase in WPI content led to significantly enhanced stability of HIPEs, and HIPEs with 5% WPI had the smallest particle size (11.9 ± 0.18 µm). With the increase in NaCl concentration, particle size was increased and ζ-potential was decreased. Higher sucrose content led to reduced particle size and ζ-potential, and slightly improved stability. Rheological tests indicated solid-like properties and shear-thinning behaviors in all HIPEs. The addition of WPI and sucrose improved the structures and viscosity of HIPEs. Simulated mayonnaises (WE-0.3%, WE-1% and YE) were then prepared based on the above HIPEs. Compared to commercial mayonnaises, the mayonnaises based on HIPEs exhibited higher viscoelastic modulus and similar tribological characteristics, indicating the potential application feasibility of oleogel-based HIPEs in mayonnaise. These findings provided insights into the development of novel and healthier mayonnaise alternatives.

20.
Food Chem ; 463(Pt 2): 141290, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305665

RESUMEN

The rising demand for sustainable proteins leads to increased interest in plant proteins like hemp protein (HP). However, commercial HP's poor functionality, including heat aggregation, limit its use. This study explored the heat-induced interactions of hemp protein particles (HPPs) with milk proteins, specifically whey proteins and caseins. Using various analysis techniques-static light scattering, TEM, SDS electrophoresis, surface hydrophobicity, and free sulfhydryl content-results showed that co-heating HPPs with whey protein isolate (WPI) or sodium caseinate (NaCN) at 95 °C for 20 min reduced HPPs aggregation. HPPs/WPI particles had a d4,3 of ∼3.8 µm, while HPPs/NaCN were ∼1.9 µm, compared to ∼27.5 µm for HPPs alone. SDS-PAGE indicated that whey proteins irreversibly bound to HPPs, through disulfide bonds, whereas casein bound reversibly, possibly involving the chaperone-like property of casein. This study proposes possible mechanisms by which HPPs interact with milk proteins and impact protein aggregation. This may provide opportunities for developing hybrid protein microparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA