Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124711, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941750

RESUMEN

In this study, an investigation was conducted on the structural and photoluminescence (PL) characteristics of LaAl2B4O10 (LAB) phosphors initially incorporated with Dy3+ and Eu3+ ions. Subsequently, the impact of varying Eu3+ concentration while maintaining a constant Dy3+ concentration was examined. Structural characterization was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS). XRD analysis confirmed the effective embedding of both dopants into the hexagonal framework of the LAB. The PL emission spectra revealed characteristic emissions of Dy3+ (blue and yellow) and Eu3+ (red) ions. The optimized dopant concentrations of both Dy3+ and Eu3+ were observed to be 3 wt%. The dominant mechanism for concentration quenching in doped LAB phosphors was determined to be the electric dipole-dipole interaction. Co-doping with Eu3+ led to a substantial decrease in Dy3+ emission intensity (∼0.18-fold) while enhancing Eu3+ emission intensity (∼3.72-fold). The critical energy transfer distance (RC = 11.64 Å) and the analysis based on the Dexter theory confirmed that the energy transfer mechanism corresponds to dipole-dipole interaction. The color purities and correlated color temperatures (CCT) were estimated, suggesting the potential of these phosphors for warm white and red lighting applications, respectively. The observed energy transfer and luminescence properties, along with the structural and compositional characterization, highlight the promising potential of LAB:Dy3+/Eu3+ co-doped phosphors for advanced lighting and display technologies.

2.
Adv Mater ; 36(4): e2309416, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856894

RESUMEN

A multichannel/multicolor visible light communication (VLC) system using entirely organic components, including organic light emitting diodes (OLEDs) and organic photodiodes (OPDs), is developed to demonstrate indoor lighting applications where the integration of OLEDs and OPDs has significant potential. To achieve this, tricolor (Red/Green/Blue(R/G/B))-selective OPD arrays for the receiver and tricolor OLED arrays for the emitter are developed. For (R/G/B)-selective OPDs, a Fabry-Pérot electrode to enhance color selectivity and a thick junction structure to effectively accommodate a wide range of driving voltages are introduced. For tricolor OLEDs, fluorescent-emitting materials are used to enhance the operating frequency in addition to introducing a cavity structure to achieve narrow emission. Utilizing these spectrally refined tricolor OPDs/OLEDs, a VLC system is designed for indoor lighting applications, and a systematic analysis of their signal-to-interference ratio dependence on the distance or angle between the transmitter and receiver is performed. The study's findings indicate the importance of emission angle-dependent wavelength shift of the OLED and the luminosity function, which varies with wavelength, in the R/G/B mixed-white-light-based VLC systems. Finally, the feasibility of VLC using tricolor OPDs/OLEDs in the real-life context of indoor white-color lighting is demonstrated, showing that the transmitted data patterns well-matched the received data patterns.

3.
Adv Mater ; 34(12): e2109228, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35034407

RESUMEN

White light-emitting electrochemical cells (LECs) comprising only [Cu(N^N)(P^P)]+ have not been reported yet, as all the attempts toward blue-emitting complexes failed. Multivariate analysis, based on prior-art [Cu(N^N)(P^P)]+ -based thin-film lighting (>90 papers) and refined with computational calculations, identifies the best blue-emitting [Cu(N^N)(P^P)]+ design for LECs, that is, N^N: 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridine and P^P: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, to achieve predicted thin-film emission at 490 nm and device performance of 3.8 cd A-1 @170 cd m-2 . Validation comes from synthesis, X-ray structure, thin-film spectroscopic/microscopy/electrochemical characterization, and device optimization, realizing the first [Cu(N^N)(P^P)]+ -based blue-LEC with 3.6 cd A-1 @180 cd m-2 . This represents a record performance compared to the state-of-the-art tricoordinate Cu(I)-complexes blue-LECs (0.17 cd A-1 @20 cd m-2 ). Versatility is confirmed with the synthesis of the analogous complex with 2-(4-(tert-butyl)phenyl)-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyrazine (N^N), showing a close prediction/experiment match: λ = 590/580 nm; efficiency = 0.55/0.60 cd A-1 @30 cd m-2 . Finally, experimental design is applied to fabricate the best white multicomponent host:guest LEC, reducing the number of trial-error attempts toward the first white all-[Cu(N^N)(P^P)]+ -LECs with 0.6 cd A-1 @30 cd m-2 . This corresponds to approximately ten-fold enhancement compared to previous LECs (<0.05 cd A-1 @<12 cd m-2 ). Hence, this work sets in the first multivariate approach to design emitters/active layers, accomplishing first-class [Cu(N^N)(P^P)]+ -based blue/white LECs that were previously elusive.

4.
ACS Appl Mater Interfaces ; 12(49): 55094-55106, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33215923

RESUMEN

Organic solid materials with color-tunable emissions have been extensively applied in various fields. However, a rational design and facile synthesis of an ideal fluorophore are still challenging due to the undesirable aggregation-caused quenching effect in concentrated solution and solid form. Herein, we have developed a series of 2-(2'-hydroxyphenyl)benzothiazole (HBT)-derived color-tunable solid emitters by switching functional groups at the ortho-position of a hydroxyl group via formylation and an aldol condensation reaction. By tuning the electron-withdrawing ability and the π-conjugated framework introduced by the functional groups, fluorophores emit light covering the full-color range from blue to near-infrared regions with high quantum yields in their solid form and show a significant solvatochromic effect in polar solvents. The aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) and excited-state intramolecular proton transfer (ESIPT) involving fluorescence mechanism, along with their inter/intramolecular interactions in crystals, are elucidated to depict the key factors for tunable emissions and high emitting efficiency. Furthermore, high-quality white-light-emitting materials are obtained in various solvents and polydimethylsiloxane (PDMS) films with combined fluorophores. Overall, these studies report a promising strategy for the construction of organic solid materials with color-tunable emission and shed light on methods for obtaining desirable emission efficiency.

5.
Adv Mater ; 31(46): e1905079, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31583772

RESUMEN

Energy-saving white lighting from the efficient intrinsic emission of semiconductors is considered as a next-generation lighting source. Currently, white-light emission can be composited with a blue light-emitting diode and yellow phosphor. However, this solution has an inevitable light loss, which makes the improvement of the energy utilization efficiency more difficult. To deal with this problem, intrinsic white-light emission (IWE) in a single solid material gives a possibility. Here, an all-inorganic lead-free CsCu2 I3 perovskite single crystal (SC) with stable and high photoluminescence quantum yield (≈15.7%) IWE through strongly localized 1D exciton recombination is synthesized. In the CsCu2 I3 , the Cu-I octahedron, which provides most of electron states, is isolated by Cs atoms in two directions to form a 1D electronic structure, resulting a high radiation recombination rate of excitons. With this electronic structure design, the CsCu2 I3 SCs have great potential in energy-saving white lighting.

6.
Luminescence ; 33(6): 1087-1093, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29968966

RESUMEN

Dy3+ -doped ZnO nanofibres with diameters from 200 to 500 nm were made using an electrospinning technique. The as-fabricated amorphous nanofibres resulted in good crystalline continuous nanofibres through calcination. Dy3+ -doped ZnO nanofibres were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) light spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). XRD showed the well defined peaks of ZnO. UV-vis spectra showed a good absorption band at 360 nm. FTIR spectra showed a Zn-O stretching vibration confirming the presence of ZnO. Photoluminescence spectra of Dy3+ -doped ZnO nanofibres showed an emission peak in the visible region that was free from any ZnO defect emission. Emissions at 480 nm and 575 nm in the Dy3+ -doped ZnO nanofibres were the characteristic peaks of dopant Dy3+ and implied efficient energy transfer from host to dopant. Luminescence intensity was found to be increased with increasing doping concentration and reduction in nanofibre diameter. Colour coordinates were calculated from photometric characterizations, which resembled the properties for warm white lighting devices.


Asunto(s)
Disprosio/química , Técnicas Electroquímicas , Luminiscencia , Nanofibras/química , Óxido de Zinc/química , Iluminación , Mediciones Luminiscentes , Tamaño de la Partícula , Procesos Fotoquímicos
7.
Artículo en Inglés | MEDLINE | ID: mdl-28238833

RESUMEN

The core circadian clock mechanism relies on a feedback loop comprised of clock genes, such as the brain and muscle Arnt-like 1 (Bmal1), chriptochrome 1 (Cry1), and period 3 (Per3). Exposure to the light-dark cycle synchronizes the master circadian clock in the brain, and which then synchronizes circadian clocks in peripheral tissues. Birds have long been used as a model for the investigation of circadian rhythm in human neurobiology. In the present study, we examined the effects of continuous light and the combination of white and blue light on the expression of clock genes (Bmal1, Cry1, and Per3) in the central and peripheral tissues in chicks. Seventy two day-old male chicks were weighed, allocated to three groups and maintained under three light schedules: 12h white light-12h dark-cycles group (control); 24h white light group (WW group); 12h white light-12h blue light-cycles group (WB group). The mRNA levels of clock genes in the diencephalon were significantly different between the control and WW groups. On the other hand, the alteration in the mRNA levels of clock genes was similar between the control and WB groups. Similar phenomena were observed in the liver and skeletal muscle (biceps femoris). These results suggest that 12h white-12h blue light-cycles did not disrupt the circadian rhythm of clock gene expression in chicks.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Luz , Animales , Pollos , Diencéfalo/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Hígado/efectos de la radiación , Músculo Esquelético/efectos de la radiación , ARN Mensajero/genética
8.
ACS Appl Mater Interfaces ; 8(19): 12291-7, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27120773

RESUMEN

Fluorescence of semiconductor quantum dots (QDs) can be tuned by engineering the band gap via size and composition control and further doping them with impurity ions. Targeting on highly bright white-emissive I-III-VI -type copper gallium sulfide (Cu-Ga-S, CGS) host QDs with the entire visible spectral coverage of blue to red, herein, Mn(2+) ion doping, through surface adsorption and lattice diffusion is fulfilled. Upon doping a distinct Mn emission from (4)T1-(6)A1 transition successfully appears in white photoluminescence (PL) of undoped CGS/ZnS core/shell QDs and with varying Mn concentration a systematic white spectral evolution of CGS:Mn/ZnS QDs is achievable with high PL quantum yield retained. The origins of white PL of CGS:Mn/ZnS QDs that is well decomposed into three emission bands are appropriately assigned. The resulting single-phased, doped QDs are then employed as near-UV-to-white down converters for the fabrication of white light-emitting diodes (LEDs). Electroluminescent properties of white QD-LEDs depending on Mn concentration of CGS:Mn/ZnS QDs and forward current are also discussed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA