Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.380
Filtrar
1.
Nat Commun ; 15(1): 5557, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956415

RESUMEN

Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.


Asunto(s)
ADN , Trampas Extracelulares , Hemostasis , Hemostáticos , Hidrogeles , Cicatrización de Heridas , Animales , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , ADN/química , Masculino , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Hemostasis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Hemostáticos/farmacología , Hemostáticos/química , Ratas Sprague-Dawley , Hemorragia , Humanos , Neutrófilos/metabolismo , Modelos Animales de Enfermedad
2.
Anal Chim Acta ; 1316: 342873, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969432

RESUMEN

BACKGROUND: DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS: A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE: The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.


Asunto(s)
ADN , MicroARNs , MicroARNs/sangre , MicroARNs/análisis , Humanos , ADN/química , Límite de Detección , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Sondas de ADN/química , Sondas de ADN/genética , Endonucleasas/metabolismo , Endonucleasas/química , Secuencias Invertidas Repetidas
3.
J Nanobiotechnology ; 22(1): 394, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965594

RESUMEN

DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.


Asunto(s)
ADN , Hígado , Nanoestructuras , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Ratones , Hígado/metabolismo , ADN/química , Nanoestructuras/química , Masculino , Distribución Tisular , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
4.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975896

RESUMEN

Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view graph embedding fusion has been applied to the task of protein-DNA binding site prediction. The results of five-fold cross-validation and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case studies also verify the superiority and generalization ability of EGPDI.


Asunto(s)
Biología Computacional , Proteínas de Unión al ADN , ADN , Redes Neurales de la Computación , Sitios de Unión , ADN/metabolismo , ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Biología Computacional/métodos , Algoritmos , Unión Proteica
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000496

RESUMEN

It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.


Asunto(s)
Aductos de ADN , ADN , Oxaliplatino , ADN/química , ADN/metabolismo , Aductos de ADN/química , Oxaliplatino/química , Oxaliplatino/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico
6.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001045

RESUMEN

Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Vibración , Sistemas de Atención de Punto , Humanos , Ácidos Nucleicos/análisis , ADN/análisis , ADN/genética , ADN/química
7.
Sci Adv ; 10(27): eadn9423, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968349

RESUMEN

DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.


Asunto(s)
Núcleo Celular , ADN , Nanoestructuras , Núcleo Celular/metabolismo , Humanos , ADN/química , ADN/metabolismo , Nanoestructuras/química , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Nanotubos/química
8.
Mikrochim Acta ; 191(8): 462, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990374

RESUMEN

A CHA-based fluorescent DNA tetrahedral probe (FDTp) has been designed to detect the microRNAs miR-21 and miR-155 sensitively and specifically in living cells. The design consisted of functional elements (H1, H2, and Protector) connected to a DNA tetrahedron modified with two pairs of fluorophores and quenching groups. In the presence of miR-21, the chain displacement effect was triggered and Cy3 fluorescence was emitted. In the presence of miR-155, the signal of the catalytic hairpin assembly (CHA) between H1 and H2 on FDTp was amplified, making the fluorescence of FAM sensitive to miR-155. Using this method, the detection limit for miR-155 was 5 pM. The FDTp successfully imaged miR-21 and miR-155 in living cells and distinguished a variety of cell lines based on their expression levels of miR-21 and miR-155. The detection and imaging of dual targets in this design ensured the accuracy of tumor diagnosis and provided a new method for early tumor diagnosis.


Asunto(s)
Colorantes Fluorescentes , MicroARNs , MicroARNs/análisis , Humanos , Colorantes Fluorescentes/química , Límite de Detección , Sondas de ADN/química , Imagen Óptica , Espectrometría de Fluorescencia , Secuencias Invertidas Repetidas , Células HeLa , Catálisis , ADN/química
9.
J Am Chem Soc ; 146(28): 18916-18926, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38951503

RESUMEN

Kinetic proofreading is used throughout natural systems to enhance the specificity of molecular recognition. At its most basic level, kinetic proofreading uses a supply of chemical fuel to drive a recognition interaction out of equilibrium, allowing a single free-energy difference between correct and incorrect targets to be exploited two or more times. Despite its importance in biology, there has been little effort to incorporate kinetic proofreading into synthetic systems in which molecular recognition is important, such as nucleic acid nanotechnology. In this article, we introduce a DNA strand displacement-based kinetic proofreading motif, showing that the consumption of a DNA-based fuel can be used to enhance molecular recognition during a templated dimerization reaction. We then show that kinetic proofreading can enhance the specificity with which a probe discriminates single nucleotide mutations, both in terms of the initial rate with which the probe reacts and the long-time behavior.


Asunto(s)
ADN , Cinética , ADN/química , Dimerización
10.
J Am Chem Soc ; 146(29): 20141-20146, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982685

RESUMEN

The primary challenge of implementing DNA nanostructures in biomedical applications lies in their vulnerability to nuclease degradation and variations in ionic strength. Furthermore, the size minimization of DNA and RNA nanostructures is limited by the stability of the DNA and RNA duplexes. This study presents a solution to these problems through the use of acyclic (l)-threoninol nucleic acid (aTNA), an artificial acyclic nucleic acid, which offers enhanced resilience under physiological conditions. The high stability of homo aTNA duplexes enables the design of durable nanostructures with dimensions below 5 nm, previously unattainable due to the inherent instability of DNA structures. The assembly of a stable aTNA-based 3D cube and pyramid that involves an i-motif formation is demonstrated. In particular, the cube outperforms its DNA-based counterparts in terms of stability. We furthermore demonstrate the successful attachment of a nanobody to the aTNA cube using the favorable triplex formation of aTNA with ssDNA. The selective in vitro binding capability to human epidermal growth factor receptor 2 is demonstrated. The presented research presents the use of aTNA for the creation of smaller durable nanostructures for future medical applications. It also introduces a new method for attaching payloads to these structures, enhancing their utility in targeted therapies.


Asunto(s)
Amino Alcoholes , Humanos , Amino Alcoholes/química , Ácidos Nucleicos/química , Nanoestructuras/química , Conformación de Ácido Nucleico , ADN/química , Butileno Glicoles/química , Temperatura
11.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3421-3431, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041114

RESUMEN

DNA G-quadruplex(G4) is a guanine-rich single-stranded DNA sequence that spontaneously folds into a spherical four-stranded DNA secondary structure in oncogene promoter sequences and telomeres. G4s are highly associated with the occurrence and development of cancer and have emerged as promising anticancer targets. Natural products have long been important sources of anticancer drug development. In recent years, significant progress has been made in the discovery of natural drugs targeting DNA G4s, with many DNA G4s have been confirmed as promising targets of natural products, including MYC-G4, KRAS-G4, PDGFR-ß-G4, BCL-2-G4, VEGF-G4, and telomeric G4. This review summarizes the research progress in discovering natural small molecules that target DNA G4s and their binding mechanisms. It also discusses the opportunities of and challenges in developing drugs targeting DNA G4s. This review will serve as a valuable reference for the research on natural products, particularly in the development of novel antitumor medications.


Asunto(s)
Productos Biológicos , G-Cuádruplex , G-Cuádruplex/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Humanos , Animales , ADN/química , ADN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/química , Antineoplásicos/farmacología
12.
Nat Commun ; 15(1): 5727, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977669

RESUMEN

DNA replication and transcription generate DNA supercoiling, which can cause topological stress and intertwining of daughter chromatin fibers, posing challenges to the completion of DNA replication and chromosome segregation. Type II topoisomerases (Top2s) are enzymes that relieve DNA supercoiling and decatenate braided sister chromatids. How Top2 complexes deal with the topological challenges in different chromatin contexts, and whether all chromosomal contexts are subjected equally to torsional stress and require Top2 activity is unknown. Here we show that catalytic inhibition of the Top2 complex in interphase has a profound effect on the stability of heterochromatin and repetitive DNA elements. Mechanistically, we find that catalytically inactive Top2 is trapped around heterochromatin leading to DNA breaks and unresolved catenates, which necessitate the recruitment of the structure specific endonuclease, Ercc1-XPF, in an SLX4- and SUMO-dependent manner. Our data are consistent with a model in which Top2 complex resolves not only catenates between sister chromatids but also inter-chromosomal catenates between clustered repetitive elements.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Heterocromatina , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/genética , Heterocromatina/metabolismo , Animales , Inhibidores de Topoisomerasa II/farmacología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Replicación del ADN , ADN Superhelicoidal/metabolismo , ADN Superhelicoidal/química , Humanos , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN/metabolismo , ADN/química , Interfase
13.
Mikrochim Acta ; 191(7): 437, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951284

RESUMEN

A stable DNA signal amplification sensor was developed on account of rolling circle amplification (RCA). This sensor includes target DNA-controlled rolling circle amplification technology and locking probe DNA replacement technology, which can be used to detect DNA fragments with genetic information, thus constructing a biosensor for universal detection of DNA. This study takes the homologous DNA of human immunodeficiency virus (HIV) and let-7a as examples to describe this biosensor. The padlock probe is first cyclized by T4 DNA ligase in response to the target's reaction with it. Then, rolling cycle amplification is initiated by Phi29 DNA polymerase, resulting in the formation of a lengthy chain with several triggers. These triggers can open the locked probe LP1 with the fluorescence signal turned off, so that it can continue to react with H2 to form a stable H1-H2 double strand. This regulates the distance between B-DNA modified by the quenching group and H1 modified by fluorescent group, and the fluorescence signal is recovered.


Asunto(s)
Técnicas Biosensibles , Sondas de ADN , Técnicas de Amplificación de Ácido Nucleico , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Sondas de ADN/química , Sondas de ADN/genética , Colorantes Fluorescentes/química , ADN Viral/análisis , ADN Viral/genética , ADN/química , ADN/genética , Espectrometría de Fluorescencia/métodos , Fluorescencia , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Límite de Detección , VIH/genética
14.
J Phys Chem B ; 128(28): 6830-6837, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38959208

RESUMEN

The i-motif, a secondary structure of a four-helix formed by cytosine-rich DNA (i-DNA) through C-C+ base pairing, is prevalent in human telomeres and promoters. This structure creates steric hindrance, thereby inhibiting both gene expression and protein coding. The conformation of i-DNA is intricately linked to the intracellular ionic environment. Hence, investigating its conformation under various ion conditions holds significant importance. In this study, we explored the impact of cations on the i-motif structure at the single-molecule level using the α-hemolysin (α-HL) nanochannel. Our findings reveal that the ability of i-DNA to fold into the i-motif structure follows the order Cs+ > Na+ > K+ > Li+ for monovalent cations. Furthermore, we observed the interconversion of single-stranded DNA (ss-DNA) and the i-motif structure at high and low concentrations of Mg2+ and Ba2+ electrolyte solutions. This study not only has the potential to extend the application of i-motif-based sensors in complex solution environments but also provides a new idea for the detection of metal ions.


Asunto(s)
Cationes , ADN , Proteínas Hemolisinas , Nanoporos , ADN/química , Cationes/química , Proteínas Hemolisinas/química , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Citosina/química , ADN de Cadena Simple/química
15.
Chem Commun (Camb) ; 60(59): 7638-7641, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38963238

RESUMEN

The versatile reactivity of isothiocyanate intermediates enabled the diversity-oriented synthesis (DOS) of N-heterocycles in a DNA-compatible manner. We first reported a mild in situ conversion of DNA-conjugated amines to isothiocyanates. Subsequently, a set of diverse transformations was successfully developed to construct 2-thioxo-quinazolinones, 1,2,4-thiadiazoles, and 2-imino thiazolines. Finally, the feasibility of these approaches in constructing DELs was further demonstrated through enzymatic ligation and mock pool preparation. This study demonstrated the advantages of combining in situ conversion strategies with DOS, which effectively broadened the chemical and structural diversity of DELs.


Asunto(s)
ADN , Compuestos Heterocíclicos , Isotiocianatos , Isotiocianatos/química , ADN/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Estructura Molecular , Aminas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química
16.
Sci Rep ; 14(1): 16274, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009614

RESUMEN

The α-helical antimicrobial peptide Kn2-7 enhances the activation of mouse macrophage-like RAW264.7 induced by DNA containing unmethylated cytosine-guanine motifs (CpG DNA). This enhancement is related to increased cellular uptake of DNA by Kn2-7, but the relevant properties of Kn2-7 are unknown. Physicochemical property analysis revealed that Kn2-7 has high amphipathicity. In contrast, the α-helical antimicrobial peptide L5, which increases the cellular uptake of CpG DNA but does not enhance CpG DNA-induced activation, has low amphipathicity. Kn2-7 derivatives with decreased amphipathicity but the same amino acid composition as Kn2-7 did not enhance CpG DNA-induced activation. On the other hand, L5 derivatives with high amphipathicity but the same amino acid composition as L5 enhanced CpG DNA-induced activation. Cellular uptake of DNA was not increased by the L5 derivatives, indicating that high amphipathicity does not affect DNA uptake. Furthermore, α-helical peptides with reversed sequences relative to the Kn2-7 and L5 derivatives with high amphipathicity were synthesized. The reversed-sequence peptides, which had the same amphipathicity but different amino acid sequences from their counterparts, enhanced CpG DNA-induced activation. Taken together, these observations indicate that the high amphipathicity of α-helical peptides enhances the CpG DNA-induced activation of RAW264.7.


Asunto(s)
Islas de CpG , Macrófagos , Animales , Ratones , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , ADN/química , ADN/metabolismo , Activación de Macrófagos/efectos de los fármacos , Conformación Proteica en Hélice alfa , Metilación de ADN/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química
17.
Methods Mol Biol ; 2819: 357-379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028515

RESUMEN

Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. The activity of architectural proteins is often subject to further modulation and regulation through the interaction with a diverse array of other protein factors. Detailed knowledge on the binding modes involved is crucial for our understanding of how these protein-protein and protein-DNA interactions shape the functional landscape of chromatin in all kingdoms of life: bacteria, archaea, and eukarya.Microscale thermophoresis (MST) is a biophysical technique for the study of biomolecular interactions. It has seen increasing application in recent years thanks to its solution-based nature, rapid application, modest sample demand, and the sensitivity of the thermophoresis effect to binding events.Here, we describe the use of MST in the study of chromatin interactions. The emphasis lies on the wide range of ways in which these experiments are set up and the diverse types of information they reveal. These aspects are illustrated with four very different systems: the sequence-dependent DNA compaction by architectural protein HMfB, the sequential binding of core histone complexes to histone chaperone APLF, the impact of the nucleosomal context on the recognition of histone modifications, and the binding of a viral peptide to the nucleosome. Special emphasis is given to the key steps in the design, execution, and analysis of MST experiments in the context of the provided examples.


Asunto(s)
Cromatina , Histonas , Nucleosomas , Unión Proteica , Cromatina/metabolismo , Cromatina/genética , Nucleosomas/metabolismo , Histonas/metabolismo , ADN/metabolismo , ADN/química , ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Chaperonas de Histonas/metabolismo
18.
Methods Mol Biol ; 2819: 279-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028512

RESUMEN

Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.


Asunto(s)
ADN , Microscopía de Fuerza Atómica , Sulfolobus solfataricus , Microscopía de Fuerza Atómica/métodos , Sulfolobus solfataricus/metabolismo , ADN/química , ADN/metabolismo , Cromatina/metabolismo , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Unión Proteica
19.
Methods Mol Biol ; 2819: 297-340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028513

RESUMEN

Atomic force microscopy (AFM) is widely used to image and study biological molecules. As an example, we have utilized AFM to investigate how the mechanical properties of DNA polymers depend on electrostatics and the strength of DNA base stacking by studying double-stranded DNA molecules incorporating several different neutral and charged base modifications. Here we describe ten complementary approaches for determining DNA persistence length by AFM imaging. The combination of different approaches provides increased confidence and statistical reliability over existing methods utilizing only a single approach.


Asunto(s)
ADN , Microscopía de Fuerza Atómica , Microscopía de Fuerza Atómica/métodos , ADN/química , Electricidad Estática , Conformación de Ácido Nucleico
20.
Methods Mol Biol ; 2819: 341-356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028514

RESUMEN

Dynamic light scattering (DLS) enables the characterization of sizes and electrokinetic properties of colloids, polymers, and macromolecules. DNA is a charged semiflexible polyelectrolyte that is condensed or compacted by counterions, proteins, and other condensing agents in processes such as chromosome compaction and gene therapeutic applications. DNA condensation is closely related to charge screening since packaging requires effective neutralization of its surface negative charges. In this chapter, we describe in detail the protocol for DLS DNA-ligand complexes. As an example, we describe data for the condensation of DNA by chitosan and the measurement of size, zeta potential, and electrophoretic mobility of the DNA-ligand complex by DLS.


Asunto(s)
ADN , Dispersión Dinámica de Luz , ADN/química , Ligandos , Quitosano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...