Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 2076, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233992

RESUMEN

Complex molecular responses preserve gene expression accuracy and genome integrity in the face of environmental perturbations. Here we report that, in response to UV irradiation, RNA polymerase II (RNAPII) molecules are dynamically and synchronously released from promoter-proximal regions into elongation to promote uniform and accelerated surveillance of the whole transcribed genome. The maximised influx of de novo released RNAPII correlates with increased damage-sensing, as confirmed by RNAPII progressive accumulation at dipyrimidine sites and by the average slow-down of elongation rates in gene bodies. In turn, this transcription elongation 'safe' mode guarantees efficient DNA repair regardless of damage location, gene size and transcription level. Accordingly, we detect low and homogenous rates of mutational signatures associated with UV exposure or cigarette smoke across all active genes. Our study reveals a novel advantage for transcription regulation at the promoter-proximal level and provides unanticipated insights into how active transcription shapes the mutagenic landscape of cancer genomes.


Asunto(s)
Daño del ADN/genética , Tasa de Mutación , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Elongación de la Transcripción Genética/efectos de la radiación , Línea Celular , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Humanos , ARN Polimerasa II/efectos de la radiación , Rayos Ultravioleta/efectos adversos
2.
Nat Genet ; 49(7): 1045-1051, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504701

RESUMEN

RNA polymerase II (Pol II) pauses downstream of the transcription initiation site before beginning productive elongation. This pause is a key component of metazoan gene expression regulation. Some promoters have a strong disposition for Pol II pausing and often mediate faster, more synchronous changes in expression. This requires multiple rounds of transcription and thus cannot rely solely on pause release. However, it is unclear how pausing affects the initiation of new transcripts during consecutive rounds of transcription. Using our recently developed ChIP-nexus method, we find that Pol II pausing inhibits new initiation. We propose that paused Pol II helps prevent new initiation between transcription bursts, which may reduce noise.


Asunto(s)
Proteínas de Drosophila/metabolismo , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , ADN/genética , ADN/metabolismo , Huella de ADN , Diterpenos/farmacología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Compuestos Epoxi/farmacología , Modelos Genéticos , Modelos Moleculares , Conformación de Ácido Nucleico , Fenantrenos/farmacología , Regiones Promotoras Genéticas , Conformación Proteica , Mapeo de Interacción de Proteínas , ARN Polimerasa II/efectos de la radiación , Factores de Tiempo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética/efectos de los fármacos
3.
Biochem Biophys Res Commun ; 320(4): 1133-8, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15249207

RESUMEN

The blockage of transcription elongation by RNA polymerase II (pol II) at a DNA damage site on the transcribed strand triggers a transcription-coupled DNA repair (TCR), which rapidly removes DNA damage on the transcribed strand of the expressed gene and allows the resumption of transcription. To analyze the effect of UV-induced DNA damage on transcription elongation, an in vitro transcription elongation system using pol II and oligo(dC)-tailed templates containing a cyclobutane pyrimidine dimer (CPD) or 6-4 photoproduct (6-4PP) at a specific site was employed. The results showed that pol II incorporated nucleotides opposite the CPD and 6-4PP and then stalled. Pol II formed a stable ternary complex consisting of pol II, the DNA damage template, and the nascent transcript. Furthermore, atomic force microscopy imaging revealed that pol II stalled at the damaged region. These findings may provide the basis for analysis of the initiation step of TCR.


Asunto(s)
Daño del ADN/genética , ADN/genética , ADN/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Dímeros de Pirimidina/genética , ARN Polimerasa II/genética , ADN/química , ADN/ultraestructura , Reparación del ADN/genética , Silenciador del Gen/efectos de la radiación , Humanos , ARN Polimerasa II/efectos de la radiación , Factores de Elongación Transcripcional/genética , Rayos Ultravioleta
4.
Mutat Res ; 485(2): 93-105, 2001 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-11182541

RESUMEN

It has been hypothesized that the degradation of the largest subunit of RNA polymerase II (polIILS) is required for transcription-coupled repair (TCR) of UV light-induced transcription-blocking lesions. In this study we further investigated the mechanism of UV-induced degradation of polIILS using cell lines with specific defects in TCR or in the recovery of RNA synthesis. It was found that the hypophosphorylated IIa form of polIILS rapidly decreased following UV-irradiation in all cell lines tested. Inhibition of proteasome activity resulted in an increase of the hyperphosphorylated IIo form of polIILS in UV-irradiated cells, while inhibition of CTD-kinases resulted in the retention of the IIa form. In UV-irradiated Cockayne's syndrome cells, which are defective in TCR, the levels of the IIo form increased in a similar manner as when proteasome inhibitors were added to UV-irradiated normal cells. In contrast, TCR-deficient HCT116 cells, which lack the mismatch repair protein MLH1, showed proficient degradation of polIILS as did cells with deficiencies in the recovery of RNA synthesis following UV-irradiation due to defective p53. Furthermore, we found that proteasome function was important for the recovery of mRNA synthesis even in TCR-deficient HCT116 cells. Our results suggest that proteasome-mediated degradation of polIILS is preceded by phosphorylation of the C-terminal domain of polIILS and requires the CS-A and CS-B but not MLH1 or p53 proteins. Furthermore, our results suggest that following UV-irradiation, the degradation of polIILS is required for the efficient recovery of mRNA synthesis but not for TCR per se.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo , ARN Polimerasa II/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Células CHO , Proteínas Portadoras , Línea Celular , Cricetinae , Cisteína Endopeptidasas , ADN Helicasas/genética , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Humanos , Complejos Multienzimáticos/antagonistas & inhibidores , Homólogo 1 de la Proteína MutL , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas Nucleares , Péptido Hidrolasas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Proteínas de Unión a Poli-ADP-Ribosa , Complejo de la Endopetidasa Proteasomal , Proteínas/genética , ARN/biosíntesis , ARN Polimerasa II/metabolismo , Factores de Transcripción , Transcripción Genética/efectos de la radiación , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Rayos Ultravioleta
5.
Neoplasia ; 2(3): 208-25, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10935507

RESUMEN

The tumor suppressor protein, p53, is part of the cell's emergency team that is called upon following cellular insult. How do cells sense DNA damage and other cellular stresses and what signal transduction pathways are used to alert p53? How is the resulting nuclear accumulation of p53 accomplished and what determines the outcome of p53 induction? Many posttranslational modifications of p53, such as phosphorylation, dephosphorylation, acetylation and ribosylation, have been shown to occur following cellular stress. Some of these modifications may activate the p53 protein, interfere with MDM2 binding and/or dictate cellular localization of p53. This review will focus on recent findings about how the p53 response may be activated following cellular stress.


Asunto(s)
Proteínas Nucleares , Proteína p53 Supresora de Tumor/fisiología , Animales , Cisteína Endopeptidasas/fisiología , ADN/metabolismo , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Proteína Quinasa 8 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Complejos Multienzimáticos/fisiología , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-mdm2 , ARN Polimerasa II/efectos de la radiación
6.
Photochem Photobiol ; 68(1): 1-8, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9679445

RESUMEN

We report here the results of a study to assess the usefulness of mass spectrometry as a method for rapidly locating cross-linking sites in peptides modified by UV irradiation in the presence of nucleic acid components. For this study, we selected two nucleosides (thymidine and 5-bromo-2'-deoxyuridine), two nucleotides (thymidine-5'-monophosphate and 5-bromo-2'-deoxyuridine-5'-monophosphate) and a dinucleotide (thymidylyl-[3'-->5']-2'-deoxyadenosine). The peptide picked was SPSYSPT (L-seryl-L-prolyl-L-seryl-L-tyrosyl-L-seryl-L-prolyl-L-threonine), the heptad repeat unit found in the largest subunit of the RNA polymerase II multiprotein complex. Modified peptides were isolated by reversed-phase HPLC. Molecular mass measurements confirmed that covalent adducts had been formed. High-energy tandem collision-induced dissociation mass spectrometry pinpointed the location of cross-linking in each modified peptide as being at the tyrosine residue. These results indicate that mass spectrometry is a potentially applicable technique for location of cross-linking sites in peptides, modified by attachment of nucleosides, nucleotides and dinucleotides. Such modified peptides would be among the products expected after application of standard proteolytic and nucleolytic digestion protocols to digestion of cross-linked DNA-protein complexes.


Asunto(s)
Ácidos Nucleicos/química , Ácidos Nucleicos/efectos de la radiación , Péptidos/química , Péptidos/efectos de la radiación , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados , Espectrometría de Masas , Peso Molecular , Fotoquímica , ARN Polimerasa II/química , ARN Polimerasa II/efectos de la radiación , Secuencias Repetitivas de Ácidos Nucleicos , Rayos Ultravioleta
7.
Nucleic Acids Res ; 26(4): 919-24, 1998 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9461448

RESUMEN

A new method is described for cloning DNA sequences occupied by a specific protein on chromatin in vivo . The approach uses UV cross-linking to couple proteins covalently to DNA and the resulting complexes are then purified under stringent conditions. Particular adducts are immunoprocipitated with antibody to the protein of interest. The resulting DNA (iDNA) is amplified by PCR, cloned and characterized. The model system used was RNA polymerase II (Pol II), whose density on particular DNAs under various conditions is well documented. Pol II can exist in several states on DNA. While Pol II can simply be bound to DNA, the bulk of DNA-associated Pol II is transcriptionally engaged in either the transcribing or paused states. Paused Pol IIs that have previously been characterized are found at promoters and have the distinctive property that their transcription in isolated nuclei is stimulated by sarkosyl or high salt. Here we isolate and sequence DNAs that cross-link to Pol II molecules. We identify by nuclear run-on assays those DNAs that have Pol II engaged in transcription. Twenty one percent of the iDNA clones that have detectable transcriptionally engaged Pol II appear to be paused, in that they display sarkosyl-stimulated trancription in a nuclear run-on transcription assay. At least some of these map to the 5'-ends of genes. These results suggest that transcriptional pausing of Pol II is a general phenomenon in vivo.


Asunto(s)
ADN/genética , ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Animales , Línea Celular , Clonación Molecular , Reactivos de Enlaces Cruzados , ADN/efectos de la radiación , Biblioteca de Genes , Genes de Insecto , Unión Proteica , ARN Polimerasa II/efectos de la radiación , Rayos Ultravioleta
8.
Proc Natl Acad Sci U S A ; 93(21): 11586-90, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8876179

RESUMEN

Damage to actively transcribed DNA is preferentially repaired by the transcription-coupled repair (TCR) system. TCR requires RNA polymerase II (Pol II), but the mechanism by which repair enzymes preferentially recognize and repair DNA lesions on Pol II-transcribed genes is incompletely understood. Herein we demonstrate that a fraction of the large subunit of Pol II (Pol II LS) is ubiquitinated after exposing cells to UV-radiation or cisplatin but not several other DNA damaging agents. This novel covalent modification of Pol II LS occurs within 15 min of exposing cells to UV-radiation and persists for about 8-12 hr. Ubiquitinated Pol II LS is also phosphorylated on the C-terminal domain. UV-induced ubiquitination of Pol II LS is deficient in fibroblasts from individuals with two forms of Cockayne syndrome (CS-A and CS-B), a rare disorder in which TCR is disrupted. UV-induced ubiquitination of Pol II LS can be restored by introducing cDNA constructs encoding the CSA or CSB genes, respectively, into CS-A or CS-B fibroblasts. These results suggest that ubiquitination of Pol II LS plays a role in the recognition and/or repair of damage to actively transcribed genes. Alternatively, these findings may reflect a role played by the CSA and CSB gene products in transcription.


Asunto(s)
Síndrome de Cockayne/enzimología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ubiquitinas/metabolismo , Rayos Ultravioleta , Línea Celular , Cisplatino/farmacología , Síndrome de Cockayne/genética , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Fosforilación , ARN Polimerasa II/efectos de la radiación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Transcripción Genética , Transfección
9.
J Biol Chem ; 270(40): 23390-7, 1995 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-7559497

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II (RNAP II) is essential for the assembly of RNAP II into preinitiation complexes on some promoters such as the dihydrofolate reductase (DHFR) promoter. In addition, during the transition from a preinitiation complex to a stable elongation complex, the CTD becomes heavily phosphorylated. In this report, interactions involving the CTD have been examined by protein-protein cross-linking. As a prelude to the study of CTD interactions, the effect of recombinant CTD on in vitro transcription was examined. The presence of recombinant CTD inhibits in vitro transcription from both the DHFR and adenovirus 2 major late promoters, suggesting that the CTD is involved in essential interactions with a general transcription factor(s). Factors in the transcription extract that interact with the CTD were identified by protein-protein cross-linking. Recombinant CTD was phosphorylated at its casein kinase II site, at the C terminus of the CTD, in the presence of [35S]adenosine 5'-O-(thiotriphosphate) and alkylated with azidophenacyl bromide. Incubation of azido-modified 35S-labeled CTD with a HeLa transcription extract followed by ultraviolet irradiation results in the covalent cross-linking of the CTD to proteins in contact with the CTD at the time of irradiation. Subsequent incubation with phenylmercuric acetate results in the transfer of 35S from the CTD to the protein to which it was cross-linked. The two major photolabeled bands have a M(r) of 34,000 and 74,000. The specificity of CTD interactions was demonstrated by a reduction in photolabeling in the presence of unmodified CTD or RNAP II containing an intact CTD (RNAP IIA) but not in the presence of a CTD-less RNAP II (RNAP IIB). The 35S-labeled 34- and 74-kDa proteins comigrate on SDS-polyacrylamide gel electrophoresis with the beta subunit of transcription factor IIE and the 74-kDa subunit of transcription factor IIF, respectively. Moreover, some of the minor 35S-labeled bands comigrate with other subunits of the general transcription factors.


Asunto(s)
ARN Polimerasa II/química , Factores de Transcripción TFII , Factores de Transcripción/aislamiento & purificación , Animales , Reactivos de Enlaces Cruzados , Células HeLa , Humanos , Ratones , Estructura Molecular , Fotoquímica , ARN Polimerasa II/farmacología , ARN Polimerasa II/efectos de la radiación , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/efectos de la radiación , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA