Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.158
Filtrar
1.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956295

RESUMEN

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Asunto(s)
Bacillaceae , Polilisina , Serina Proteasas , Streptomyces , Streptomyces/enzimología , Polilisina/farmacología , Polilisina/química , Polilisina/metabolismo , Serina Proteasas/metabolismo , Bacillaceae/enzimología , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Genoma Viral , Animales , Norovirus/efectos de los fármacos , Norovirus/genética , Inactivación de Virus/efectos de los fármacos , Caliciviridae/genética , Antivirales/farmacología
2.
Cells ; 13(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38994942

RESUMEN

Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV-1-derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV-1-derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases.


Asunto(s)
Arginasa , Células Dendríticas , VIH-1 , Arginasa/metabolismo , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tolerancia Inmunológica , Oligonucleótidos , ARN Viral/genética , ARN Viral/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000271

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.


Asunto(s)
Proteínas de la Cápside , Cápside , VIH-1 , Transcripción Reversa , Desencapsidación Viral , VIH-1/genética , VIH-1/fisiología , Humanos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Replicación Viral , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , ARN Viral/metabolismo , ARN Viral/genética , Transcriptasa Inversa del VIH/metabolismo , Transcriptasa Inversa del VIH/genética
4.
Methods Mol Biol ; 2837: 67-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044076

RESUMEN

RNA structure is crucial for RNA function, including in viral cis-elements such as the hepatitis B virus (HBV) RNA encapsidation signal ε. Interacting with the viral polymerase ε mediates packaging of the pregenomic (pg) RNA into capsids, initiation of reverse transcription, and it affects the mRNA functions of pgRNA. As free RNA, the 61-nucleotide (nt) ε sequence adopts a bipartite stem-loop structure with a central bulge and an apical loop. Due to stable Watson-Crick base pairing, this was already predicted by early RNA folding programs and confirmed by classical enzymatic and chemical structure probing. A newer, high-resolution probing technique exploits the selective acylation of solvent-accessible 2'-hydroxyls in the RNA backbone by electrophilic compounds such as 2-methylnicotinic acid imidazolide (NAI), followed by mapping of the modified sites by primer extension. This SHAPE principle has meanwhile been extended to numerous applications. Here we provide a basic protocol for NAI-based SHAPE of isolated HBV ε RNA which already provided insights into the impact of mutations, and preliminarily, of polymerase binding on the RNA structural dynamics. While the focus is on NAI modification, we also briefly cover target RNA preparation by in vitro transcription, primer extension using a radiolabeled primer, and analysis of the resulting cDNAs by denaturing polyacrylamide gelelectrophoresis (PAGE). Given the high tolerance of SHAPE chemistry to different conditions, including applicability in live cells, we expect this technique to greatly facilitate deciphering the conformational dynamics underlying the various functions of the ε element, especially in concert with the recently solved three-dimensional structure of the free RNA.


Asunto(s)
Virus de la Hepatitis B , Conformación de Ácido Nucleico , ARN Viral , Virus de la Hepatitis B/genética , ARN Viral/genética , ARN Viral/química , ARN Viral/metabolismo , Acilación , Ensamble de Virus
5.
Methods Mol Biol ; 2837: 59-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044075

RESUMEN

Of all the chemical modifications of RNAs, the N6-methyladenosine (m6A) modification is the most prevalent and well-characterized RNA modification that is functionally implicated in a wide range of biological processes. The m6A modification occurs in hepatitis B virus (HBV) RNAs and this modification regulates the HBV life cycle in several ways. Thus, understanding the mechanisms underlying m6A modification of HBV RNAs is crucial in understanding HBV infectious process and associated pathogenesis. Here, we describe the currently utilized method in the detection and characterization of m6A-methylated RNAs during viral infection.


Asunto(s)
Adenosina , Virus de la Hepatitis B , Inmunoprecipitación , ARN Viral , Adenosina/análogos & derivados , Adenosina/metabolismo , Virus de la Hepatitis B/genética , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Metilación , Inmunoprecipitación/métodos , Hepatitis B/virología
6.
Methods Mol Biol ; 2824: 259-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039418

RESUMEN

In negative strand RNA viruses, ribonucleoproteins, not naked RNA, constitute the template used by the large protein endowed with polymerase activity for replicating and transcribing the viral genome. Here we give an overview of the structures and functions of the ribonucleoprotein from phleboviruses. The nucleocapsid monomer, which constitutes the basic structural unit, possesses a flexible arm allowing for a conformational switch between a closed monomeric state and the formation of a polymeric filamentous structure competent for viral RNA binding and encapsidation in the open state of N. The modes of N-N oligomerization as well as interactions with vRNA are described. Finally, recent advances in tomography open exciting perspectives for a more complete understanding of N-L interactions and the design of specific antiviral compounds.


Asunto(s)
Phlebovirus , ARN Viral , Ribonucleoproteínas , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , ARN Viral/metabolismo , ARN Viral/genética , Phlebovirus/metabolismo , Phlebovirus/genética , Humanos , Modelos Moleculares , Nucleocápside/metabolismo , Nucleocápside/química , Multimerización de Proteína , Conformación Proteica , Genoma Viral
7.
Methods Mol Biol ; 2824: 319-334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039420

RESUMEN

The nucleocapsid protein (N) in Rift Valley fever virus is an RNA-binding protein that functions in viral transcription, replication, and packaging. In this chapter, the method for studying protein-RNA interactions in context of viral infection using individual nucleotide resolution, cross-linking, immunoprecipitation, and sequencing (iCLIP-seq) is explained. The method is useful for identifying the interactions between both host and viral RNAs with N and can identify RNA motifs that interact with the protein of interest.


Asunto(s)
Inmunoprecipitación , Proteínas de la Nucleocápside , ARN Viral , Virus de la Fiebre del Valle del Rift , Proteínas de la Nucleocápside/metabolismo , ARN Viral/metabolismo , ARN Viral/genética , Sitios de Unión , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/metabolismo , Inmunoprecipitación/métodos , Unión Proteica , Humanos , Proteínas de Unión al ARN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
8.
Methods Mol Biol ; 2824: 281-318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039419

RESUMEN

Rift Valley fever virus (RVFV; genus Phlebovirus, family Phenuiviridae, order Bunyavirales) is a mosquito-borne zoonotic pathogen endemic in Africa. Its negative-stranded genomic RNA (vRNA) is divided into three segments termed L, M, and S. Both vRNAs and antigenomic cRNAs are encapsidated by viral nucleoprotein (N) to form nucleocapsids, which constitute the template for genome transcription and replication. Based on a number of electron microscopy and structural studies, the viral RNAs of negative-strand RNA viruses, including phleboviruses, are commonly considered to be entirely and uniformly covered by N protein. However, high resolution data supporting this notion was missing to date.Here, we describe a method how to globally map all N-RNA interactions of RVFV by using iCLIP (individual-nucleotide resolution UV cross-linking and immunoprecipitation). The protocol is based on covalent cross-linking of direct protein-RNA interactions by UV irradiation. Following sample lysis, a selective isolation of N in complex with its RNA targets is achieved by immunoprecipitation. Then, N-RNA complexes are separated by SDS-PAGE, and after membrane transfer, RNA is isolated and subjected to library preparation and high-throughput sequencing. We explain how the standard iCLIP protocol can be adapted to RVFV N-RNA interaction studies. The protocol describes mapping of all N interactions with the vRNAs and cRNAs derived either from RVFV particles or from infected cells.


Asunto(s)
Genoma Viral , Nucleoproteínas , ARN Viral , Virus de la Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift/genética , ARN Viral/genética , ARN Viral/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Mapeo Nucleótido/métodos , Inmunoprecipitación/métodos , Humanos , Fiebre del Valle del Rift/virología , Fiebre del Valle del Rift/metabolismo , Animales
9.
Nat Commun ; 15(1): 5725, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977675

RESUMEN

The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN Viral , ARN , Sitios de Unión , ARN/química , ARN/metabolismo , ARN Viral/química , ARN Viral/metabolismo , ARN Viral/genética , Riboswitch , Bibliotecas de Moléculas Pequeñas/química , Practicantes de la Medicina Tradicional
10.
ACS Chem Biol ; 19(7): 1648-1660, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38954741

RESUMEN

Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.


Asunto(s)
Hepacivirus , ARN Viral , Replicación Viral , Proteína 1 de Unión a la Caja Y , Hepacivirus/fisiología , Hepacivirus/efectos de los fármacos , Proteína 1 de Unión a la Caja Y/metabolismo , Humanos , Replicación Viral/efectos de los fármacos , ARN Viral/metabolismo , ARN Viral/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación de ARN , ARN Polimerasa Dependiente del ARN
11.
PLoS Pathog ; 20(7): e1012345, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968329

RESUMEN

The CRISPR-Cas13 system has been proposed as an alternative treatment of viral infections. However, for this approach to be adopted as an antiviral, it must be optimized until levels of efficacy rival or exceed the performance of conventional approaches. To take steps toward this goal, we evaluated the influenza viral RNA degradation patterns resulting from the binding and enzymatic activity of mRNA-encoded LbuCas13a and two crRNAs from a prior study, targeting PB2 genomic and messenger RNA. We found that the genome targeting guide has the potential for significantly higher potency than originally detected, because degradation of the genomic RNA is not uniform across the PB2 segment, but it is augmented in proximity to the Cas13 binding site. The PB2 genome targeting guide exhibited high levels (>1 log) of RNA degradation when delivered 24 hours post-infection in vitro and maintained that level of degradation over time, with increasing multiplicity of infection (MOI), and across modern influenza H1N1 and H3N2 strains. Chemical modifications to guides with potent LbuCas13a function, resulted in nebulizer delivered efficacy (>1-2 log reduction in viral titer) in a hamster model of influenza (Influenza A/H1N1/California/04/09) infection given prophylactically or as a treatment (post-infection). Maximum efficacy was achieved with two doses, when administered both pre- and post-infection. This work provides evidence that mRNA-encoded Cas13a can effectively mitigate Influenza A infections opening the door to the development of a programmable approach to treating multiple respiratory infections.


Asunto(s)
Sistemas CRISPR-Cas , Gripe Humana , Estabilidad del ARN , ARN Mensajero , ARN Viral , Animales , ARN Viral/genética , ARN Viral/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Gripe Humana/virología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Antivirales/farmacología , Perros , Cricetinae , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mesocricetus , Células de Riñón Canino Madin Darby
12.
Nature ; 631(8021): 670-677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987591

RESUMEN

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/genética , Bacteriófagos/química , Sistemas CRISPR-Cas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Biosíntesis de Proteínas , Secuencias Hélice-Giro-Hélice , Ribosomas/metabolismo , Ribosomas/química , Sitios de Unión , Dominios Proteicos , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/química , Conformación de Ácido Nucleico , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , ARN Viral/metabolismo , ARN Viral/genética , ARN Viral/química , Transcripción Genética
13.
Proc Natl Acad Sci U S A ; 121(29): e2402126121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980902

RESUMEN

Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Transducción de Señal , Animales , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Transducción de Señal/inmunología , Intestinos/inmunología , Intestinos/virología , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/inmunología , Inmunidad Innata , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , ARN Viral/inmunología , ARN Viral/metabolismo , ARN Viral/genética
14.
Proc Natl Acad Sci U S A ; 121(29): e2312080121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985757

RESUMEN

West Nile virus (WNV) is an arthropod-borne, positive-sense RNA virus that poses an increasing global threat due to warming climates and lack of effective therapeutics. Like other enzootic viruses, little is known about how host context affects the structure of the full-length RNA genome. Here, we report a complete secondary structure of the entire WNV genome within infected mammalian and arthropod cell lines. Our analysis affords structural insights into multiple, conserved aspects of flaviviral biology. We show that the WNV genome folds with minimal host dependence, and we prioritize well-folded regions for functional validation using structural homology between hosts as a guide. Using structure-disrupting, antisense locked nucleic acids, we then demonstrate that the WNV genome contains riboregulatory structures with conserved and host-specific functional roles. These results reveal promising RNA drug targets within flaviviral genomes, and they highlight the therapeutic potential of ASO-LNAs as both WNV-specific and pan-flaviviral therapeutic agents.


Asunto(s)
Genoma Viral , ARN Viral , Virus del Nilo Occidental , Virus del Nilo Occidental/genética , Animales , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Línea Celular , Conformación de Ácido Nucleico , Fiebre del Nilo Occidental/virología , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética
15.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990941

RESUMEN

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Asunto(s)
Mutación Puntual , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , ARN Viral/genética , ARN Viral/metabolismo , Humanos , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Polimerizacion , COVID-19/virología , Sustitución de Aminoácidos , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Modelos Moleculares
16.
Viruses ; 16(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38932182

RESUMEN

Tripartite motif (TRIM) proteins, comprising a family of over 100 members with conserved motifs, exhibit diverse biological functions. Several TRIM proteins influence viral infections through direct antiviral mechanisms or by regulating host antiviral innate immune responses. To identify TRIM proteins modulating hepatitis B virus (HBV) replication, we assessed 45 human TRIMs in HBV-transfected HepG2 cells. Our study revealed that ectopic expression of 12 TRIM proteins significantly reduced HBV RNA and subsequent capsid-associated DNA levels. Notably, TRIM65 uniquely downregulated viral pregenomic (pg) RNA in an HBV-promoter-specific manner, suggesting a targeted antiviral effect. Mechanistically, TRIM65 inhibited HBV replication primarily at the transcriptional level via its E3 ubiquitin ligase activity and intact B-box domain. Though HNF4α emerged as a potential TRIM65 substrate, disrupting its binding site on the HBV genome did not completely abolish TRIM65's antiviral effect. In addition, neither HBx expression nor cellular MAVS signaling was essential to TRIM65-mediated regulation of HBV transcription. Furthermore, CRISPR-mediated knock-out of TRIM65 in the HepG2-NTCP cells boosted HBV infection, validating its endogenous role. These findings underscore TRIM proteins' capacity to inhibit HBV transcription and highlight TRIM65's pivotal role in this process.


Asunto(s)
Virus de la Hepatitis B , Transcripción Genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Replicación Viral , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Células Hep G2 , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Hepatitis B/virología , Hepatitis B/genética , Hepatitis B/inmunología , Regiones Promotoras Genéticas , ARN Viral/genética , ARN Viral/metabolismo
17.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932237

RESUMEN

The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.


Asunto(s)
Virus Chikungunya , Genoma Viral , Procesamiento Postranscripcional del ARN , ARN Viral , Transcriptoma , Virus Chikungunya/genética , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Fiebre Chikungunya/virología , Inosina/metabolismo , Inosina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Adenosina Desaminasa
19.
Biochem Biophys Res Commun ; 725: 150252, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38878758

RESUMEN

Reverse transcription of human immunodeficiency virus type 1 (HIV-1) initiates from the 3' end of human tRNALys3. The primer tRNALys3 is selectively packaged into the virus in the form of a complex with human lysyl-tRNA synthetase (LysRS). To facilitate reverse transcription initiation, part of the 5' leader (5'L) of HIV-1 genomic RNA (gRNA) evolves a tRNA anticodon-like element (TLE), which binds LysRS and releases tRNALys3 for primer annealing and reverse transcription initiation. Although TLE has been identified as a key element in 5'L responsible for LysRS binding, how the conformations and various hairpin structures of 5'L regulate 5'L-LysRS interaction is not fully understood. Here, these factors have been individually investigated using direct and competitive fluorescence anisotropy binding experiments. Our data showed that the conformation of 5'L significantly influences its binding affinity with LysRS. The 5'L conformation favoring gRNA dimerization and packaging exhibits much weaker binding affinity with LysRS compared to the alternative 5'L conformation that is not selected for packaging. Additionally, dimerization of 5'L impairs LysRS-5'L interaction. Furthermore, among various regions of 5'L, both the primer binding site/TLE domain and the stem-loop 3 are important for LysRS interaction, whereas the dimerization initiation site and the splicing donor plays a minor role. In contrast, the presence of the transacting responsive and the polyadenylation signal hairpins slightly inhibit LysRS binding. These findings reveal that the conformation and various regions of the 5'L of HIV-1 genome regulate its interaction with human LysRS and the reverse transcription primer release process.


Asunto(s)
Genoma Viral , VIH-1 , Lisina-ARNt Ligasa , Conformación de Ácido Nucleico , Transcripción Reversa , Lisina-ARNt Ligasa/metabolismo , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Humanos , VIH-1/genética , VIH-1/enzimología , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Regiones no Traducidas 5' , Unión Proteica
20.
Viruses ; 16(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38932107

RESUMEN

Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.


Asunto(s)
Genoma Viral , Rotavirus , Proteínas no Estructurales Virales , Ensamble de Virus , Replicación Viral , Rotavirus/genética , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Humanos , Animales , ARN Viral/genética , ARN Viral/metabolismo , Cápside/metabolismo , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...