Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocr J ; 66(9): 807-816, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31189758

RESUMEN

CDK5 regulatory subunit associated protein 1-like 1 (CDKAL1) is a tRNA-modifying enzyme that catalyzes 2-methylthiolation (ms2) and has been implicated in the development of type 2 diabetes (T2D). CDKAL1-mediated ms2 is important for efficient protein translation and regulates insulin biosynthesis in pancreatic cells. Interestingly, an association between T2D and release of growth hormone (GH) has been reported in humans. However, it is unknown whether CDKAL1 is important for hormone production in the pituitary gland. The present study investigated the role of CDKAL1 in GH-producing pituitary adenomas (GHPAs). CDKAL1 activity was suppressed in GHPAs, as evidenced by a decrease in ms2, compared with non-functioning pituitary adenomas (NFPAs), which do not produce specific hormones. Downregulation of Cdkal1 using small interfering and short hairpin RNAs increased the biosynthesis and secretion of GH in rat GH3 cells. Depletion of Cdkal1 increased the cytosolic calcium level via downregulation of DnaJ heat shock protein family (Hsp40) member C10 (Dnajc10), which is an endoplasmic reticulum protein related to calcium homeostasis. This stimulated transcription of GH via upregulation of Pit-1. Moreover, CDKAL1 activity was highly sensitive to proteostatic stress and was upregulated by suppression of this stress. Taken together, these results suggest that dysregulation of CDKAL1 is involved in the pathogenesis of GHPAs, and that modulation of the proteostatic stress response might control CDKAL1 activity and facilitate treatment of GHPAs.


Asunto(s)
Adenoma/genética , Hormona del Crecimiento/biosíntesis , Neoplasias Hipofisarias/genética , ARNt Metiltransferasas/fisiología , Adenoma/metabolismo , Adenoma/patología , Animales , Células Cultivadas , Estrés del Retículo Endoplásmico/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Hormona de Crecimiento Humana/biosíntesis , Hormona de Crecimiento Humana/genética , Humanos , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , ARN Interferente Pequeño/farmacología , Ratas , Respuesta de Proteína Desplegada/fisiología , ARNt Metiltransferasas/genética
2.
Nucleic Acids Res ; 47(2): 883-898, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30508117

RESUMEN

Modified nucleosides on tRNA are critical for decoding processes and protein translation. tRNAs can be modified through 1-methylguanosine (m1G) on position 37; a function mediated by Trm5 homologs. We show that AtTRM5a (At3g56120) is a Trm5 ortholog in Arabidopsis thaliana. AtTrm5a is localized to the nucleus and its function for m1G and m1I methylation was confirmed by mutant analysis, yeast complementation, m1G nucleoside level on single tRNA, and tRNA in vitro methylation. Arabidopsis attrm5a mutants were dwarfed and had short filaments, which led to reduced seed setting. Proteomics data indicated differences in the abundance of proteins involved in photosynthesis, ribosome biogenesis, oxidative phosphorylation and calcium signalling. Levels of phytohormone auxin and jasmonate were reduced in attrm5a mutant, as well as expression levels of genes involved in flowering, shoot apex cell fate determination, and hormone synthesis and signalling. Taken together, loss-of-function of AtTrm5a impaired m1G and m1I methylation and led to aberrant protein translation, disturbed hormone homeostasis and developmental defects in Arabidopsis plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Guanosina/análogos & derivados , Inosina/análogos & derivados , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Biocatálisis , Señalización del Calcio , Núcleo Celular/enzimología , Guanosina/metabolismo , Ácidos Indolacéticos/metabolismo , Inosina/metabolismo , Mutación , Fotosíntesis , ARN de Transferencia/química , Ribosomas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2083-2093, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30557699

RESUMEN

Mutations in the X chromosomal tRNA 2'­O­methyltransferase FTSJ1 cause intellectual disability (ID). Although the gene is ubiquitously expressed affected individuals present no consistent clinical features beyond ID. In order to study the pathological mechanism involved in the aetiology of FTSJ1 deficiency-related cognitive impairment, we generated and characterized an Ftsj1 deficient mouse line based on the gene trapped stem cell line RRD143. Apart from an impaired learning capacity these mice presented with several statistically significantly altered features related to behaviour, pain sensing, bone and energy metabolism, the immune and the hormone system as well as gene expression. These findings show that Ftsj1 deficiency in mammals is not phenotypically restricted to the brain but affects various organ systems. Re-examination of ID patients with FTSJ1 mutations from two previously reported families showed that several features observed in the mouse model were recapitulated in some of the patients. Though the clinical spectrum related to Ftsj1 deficiency in mouse and man is variable, we suggest that an increased pain threshold may be more common in patients with FTSJ1 deficiency. Our findings demonstrate novel roles for Ftsj1 in maintaining proper cellular and tissue functions in a mammalian organism.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual/etiología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Metiltransferasas/fisiología , Mutación , Proteínas Nucleares/genética , ARNt Metiltransferasas/fisiología , Animales , Conducta Animal , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Familia , Femenino , Discapacidad Intelectual/patología , Masculino , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor Nociceptivo/etiología , Dolor Nociceptivo/patología , Proteínas Nucleares/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
4.
Diabetes Obes Metab ; 20 Suppl 2: 20-27, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30230180

RESUMEN

Efficient and accurate protein translation is essential to producing insulin in pancreatic ß-cells. Transfer RNA (tRNA) is known as the key component of the protein translational machinery. Interestingly, tRNA contains a wide variety of chemical modifications, which are posttranscriptionally catalysed by tRNA modifying enzymes. Recent advances in genome-sequencing technology have unveiled a number of genetic variations that are associated with the development of type 2 diabetes (T2D). Some of these mutations are located in the genes of tRNA modifying enzymes. Using cellular and animal models, it has been showed that dysregulation of tRNA modification impairs protein translation in pancreatic ß-cells and leads to aberrant insulin production. In this review, we discuss the recent findings in the molecular functions of tRNA modifications and their involvement in the development of T2D.


Asunto(s)
Células Secretoras de Insulina/fisiología , ARN de Transferencia/fisiología , Empalme Alternativo/genética , Animales , Glucemia/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/fisiología , Metilación de ADN/fisiología , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/biosíntesis , Secreción de Insulina/fisiología , Ratones Noqueados , Oxidación-Reducción , Fenotipo , Polimorfismo de Nucleótido Simple/fisiología , Transducción de Señal/fisiología , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología
5.
Nucleic Acids Res ; 46(16): 8483-8499, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30010922

RESUMEN

Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.


Asunto(s)
Proteínas Arqueales/fisiología , Proteínas Bacterianas/fisiología , Haloferax volcanii/enzimología , Procesamiento Postranscripcional del ARN , ARNt Metiltransferasas/fisiología , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Conjuntos de Datos como Asunto , Activación Enzimática , Células Eucariotas/enzimología , Evolución Molecular , Holoenzimas/fisiología , Inmunoprecipitación , Espectrometría de Masas , Metilación , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteómica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad de la Especie , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/genética
6.
PLoS Biol ; 14(9): e1002557, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27631568

RESUMEN

The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/metabolismo , ARNt Metiltransferasas/fisiología , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Escherichia coli , Células HeLa , Humanos , Metilación , Mitocondrias/genética , ARN/genética , ARN/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mitocondrial , ARN Ribosómico 16S/genética
7.
Nucleic Acids Res ; 44(22): 10834-10848, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27683218

RESUMEN

Bacteria respond to environmental stresses using a variety of signaling and gene expression pathways, with translational mechanisms being the least well understood. Here, we identified a tRNA methyltransferase in Pseudomonas aeruginosa PA14, trmJ, which confers resistance to oxidative stress. Analysis of tRNA from a trmJ mutant revealed that TrmJ catalyzes formation of Cm, Um, and, unexpectedly, Am. Defined in vitro analyses revealed that tRNAMet(CAU) and tRNATrp(CCA) are substrates for Cm formation, tRNAGln(UUG), tRNAPro(UGG), tRNAPro(CGG) and tRNAHis(GUG) for Um, and tRNAPro(GGG) for Am. tRNASer(UGA), previously observed as a TrmJ substrate in Escherichia coli, was not modified by PA14 TrmJ. Position 32 was confirmed as the TrmJ target for Am in tRNAPro(GGG) and Um in tRNAGln(UUG) by mass spectrometric analysis. Crystal structures of the free catalytic N-terminal domain of TrmJ show a 2-fold symmetrical dimer with an active site located at the interface between the monomers and a flexible basic loop positioned to bind tRNA, with conformational changes upon binding of the SAM-analog sinefungin. The loss of TrmJ rendered PA14 sensitive to H2O2 exposure, with reduced expression of oxyR-recG, katB-ankB, and katE These results reveal that TrmJ is a tRNA:Cm32/Um32/Am32 methyltransferase involved in translational fidelity and the oxidative stress response.


Asunto(s)
Proteínas Bacterianas/química , Estrés Oxidativo , Pseudomonas aeruginosa/enzimología , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Peróxido de Hidrógeno/farmacología , Metilación , Modelos Moleculares , Pseudomonas aeruginosa/efectos de los fármacos , ARN Bacteriano/química , ARNt Metiltransferasas/fisiología
8.
Hepatology ; 60(4): 1278-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25043274

RESUMEN

UNLABELLED: Many protein-coding oncofetal genes are highly expressed in murine and human fetal liver and silenced in adult liver. The protein products of these hepatic oncofetal genes have been used as clinical markers for the recurrence of hepatocellular carcinoma (HCC) and as therapeutic targets for HCC. Herein we examined the expression profiles of long noncoding RNAs (lncRNAs) found in fetal and adult liver in mice. Many fetal hepatic lncRNAs were identified; one of these, lncRNA-mPvt1, is an oncofetal RNA that was found to promote cell proliferation, cell cycling, and the expression of stem cell-like properties of murine cells. Interestingly, we found that human lncRNA-hPVT1 was up-regulated in HCC tissues and that patients with higher lncRNA-hPVT1 expression had a poor clinical prognosis. The protumorigenic effects of lncRNA-hPVT1 on cell proliferation, cell cycling, and stem cell-like properties of HCC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Moreover, mRNA expression profile data showed that lncRNA-hPVT1 up-regulated a series of cell cycle genes in SMMC-7721 cells. By RNA pulldown and mass spectrum experiments, we identified NOP2 as an RNA-binding protein that binds to lncRNA-hPVT1. We confirmed that lncRNA-hPVT1 up-regulated NOP2 by enhancing the stability of NOP2 proteins and that lncRNA-hPVT1 function depends on the presence of NOP2. CONCLUSION: Our study demonstrates that the expression of many lncRNAs is up-regulated in early liver development and that the fetal liver can be used to search for new diagnostic markers for HCC. LncRNA-hPVT1 promotes cell proliferation, cell cycling, and the acquisition of stem cell-like properties in HCC cells by stabilizing NOP2 protein. Regulation of the lncRNA-hPVT1/NOP2 pathway may have beneficial effects on the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Proliferación Celular/fisiología , Neoplasias Hepáticas/fisiopatología , Células Madre Neoplásicas/fisiología , Proteínas Nucleares/fisiología , ARN Largo no Codificante/fisiología , ARNt Metiltransferasas/fisiología , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Ciclo Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Pronóstico , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/fisiología
9.
Nucleic Acids Res ; 41(19): 9062-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23913415

RESUMEN

Yeast 25S rRNA was reported to contain a single cytosine methylation (m(5)C). In the present study using a combination of RP-HPLC, mung bean nuclease assay and rRNA mutagenesis, we discovered that instead of one, yeast contains two m(5)C residues at position 2278 and 2870. Furthermore, we identified and characterized two putative methyltransferases, Rcm1 and Nop2 to be responsible for these two cytosine methylations, respectively. Both proteins are highly conserved, which correlates with the presence of two m(5)C residues at identical positions in higher eukaryotes, including humans. The human homolog of yeast Nop2, p120 has been discovered to be upregulated in various cancer tissues, whereas the human homolog of Rcm1, NSUN5 is completely deleted in the William's-Beuren Syndrome. The substrates and function of both human homologs remained unknown. In the present study, we also provide insights into the significance of these two m(5)C residues. The loss of m(5)C2278 results in anisomycin hypersensitivity, whereas the loss of m(5)C2870 affects ribosome synthesis and processing. Establishing the locations and enzymes in yeast will not only help identifying the function of their homologs in higher organisms, but will also enable understanding the role of these modifications in ribosome function and architecture.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , 5-Metilcitosina , Alelos , Secuencia de Bases , Cisteína/química , Eliminación de Gen , Metilación , Metiltransferasas/genética , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fenotipo , ARN Ribosómico/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , ARNt Metiltransferasas/fisiología
10.
RNA ; 18(10): 1921-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22912484

RESUMEN

Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-Δ mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-Δ mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-Δ mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-Δ trm734-Δ mutants phenocopy trm7-Δ mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-Δ mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.


Asunto(s)
ARN de Transferencia de Fenilalanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/fisiología , Anticodón/química , Anticodón/metabolismo , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Conformación de Ácido Nucleico , Organismos Modificados Genéticamente , Unión Proteica/fisiología , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia de Fenilalanina/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Levaduras/genética , Levaduras/metabolismo , ARNt Metiltransferasas/genética
11.
J Biol Chem ; 286(40): 35236-46, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21844194

RESUMEN

Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1.


Asunto(s)
Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/química , Alanina , Sitios de Unión , Cristalografía por Rayos X/métodos , Enlace de Hidrógeno , Cinética , Metilación , Modelos Químicos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , ARN de Transferencia/química , Proteínas Recombinantes/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/fisiología
12.
RNA ; 15(9): 1693-704, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19622680

RESUMEN

The RsmG methyltransferase is responsible for N(7) methylation of G527 of 16S rRNA in bacteria. Here, we report the identification of the Thermus thermophilus rsmG gene, the isolation of rsmG mutants, and the solution of RsmG X-ray crystal structures at up to 1.5 A resolution. Like their counterparts in other species, T. thermophilus rsmG mutants are weakly resistant to the aminoglycoside antibiotic streptomycin. Growth competition experiments indicate a physiological cost to loss of RsmG activity, consistent with the conservation of the modification site in the decoding region of the ribosome. In contrast to Escherichia coli RsmG, which has been reported to recognize only intact 30S subunits, T. thermophilus RsmG shows no in vitro methylation activity against native 30S subunits, only low activity with 30S subunits at low magnesium concentration, and maximum activity with deproteinized 16S rRNA. Cofactor-bound crystal structures of RsmG reveal a positively charged surface area remote from the active site that binds an adenosine monophosphate molecule. We conclude that an early assembly intermediate is the most likely candidate for the biological substrate of RsmG.


Asunto(s)
ARN Ribosómico 16S/metabolismo , Thermus thermophilus/enzimología , ARNt Metiltransferasas/química , ARNt Metiltransferasas/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Conformación de Ácido Nucleico , Organismos Modificados Genéticamente , Fenotipo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Homología de Secuencia de Aminoácido , Estreptomicina/metabolismo , Thermus thermophilus/genética , Thermus thermophilus/aislamiento & purificación , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
13.
Antimicrob Agents Chemother ; 53(1): 271-2, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18955532

RESUMEN

High-level resistance to aminoglycosides produced by 16S rRNA methylases in Enterobacteriaceae isolates was investigated. The prevalences of armA in Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae were 0.6%, 3.0%, and 10%, respectively. rmtB was more prevalent than armA. Pulsed-field gel electrophoresis patterns indicated that armA and rmtB have spread horizontally and clonally.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , ARN Ribosómico 16S/metabolismo , ARNt Metiltransferasas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/fisiología , China , Electroforesis en Gel de Campo Pulsado , Pruebas de Sensibilidad Microbiana , ARNt Metiltransferasas/fisiología
14.
Proc Natl Acad Sci U S A ; 105(14): 5459-64, 2008 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-18391219

RESUMEN

Modified nucleosides close to the anticodon are important for the proper decoding of mRNA by the ribosome. Particularly, the uridine at the first anticodon position (U34) of glutamate, lysine, and glutamine tRNAs is universally thiolated (S(2)U34), which is proposed to be crucial for both restriction of wobble in the corresponding split codon box and efficient codon-anticodon interaction. Here we show that the highly conserved complex Ctu1-Ctu2 (cytosolic thiouridylase) is responsible for the 2-thiolation of cytosolic tRNAs in the nematode and fission yeast. In both species, inactivation of the complex leads to loss of thiolation on tRNAs and to a thermosensitive decrease of viability associated with marked ploidy abnormalities and aberrant development. Increased level of the corresponding tRNAs suppresses the fission yeast defects, and our data suggest that these defects could result from both misreading and frame shifting during translation. Thus, a translation defect due to unmodified tRNAs results in severe genome instability.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/fisiología , ARNt Metiltransferasas/fisiología , Animales , Citosol/enzimología , Genoma Fúngico , Genoma de los Helmintos , ARN de Transferencia/metabolismo
15.
Methods Enzymol ; 425: 103-19, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17673080

RESUMEN

Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA[uracil-54,C5]-MTases). In eukaryotes and many bacteria, the methyl donor for this reaction is generally S-adenosyl-L-methionine (S-AdoMet). However, in other bacteria, like Enterococcus faecalis and Bacillus subtilis, it was shown that the source of carbon is N(5),N(10)-methylenetetrahydrofolate (CH(2)=THF). Recently we have determined that the Bacillus subtilis gid gene (later renamed to trmFO) encodes the folate-dependent tRNA(uracil-54,C5)-MTase. Here, we describe a procedure for overexpression and purification of this recombinant enzyme, as well as detection of its activity in vitro. Inspection of presently available sequenced genomes reveals that trmFO gene is present in most Firmicutes, in all alpha- and delta-Proteobacteria (except Rickettsiales in which the trmFO gene is missing), Deinococci, Cyanobacteria, Fusobacteria, Thermotogales, Acidobacteria, and in one Actinobacterium. Interestingly, trmFO is never found in genomes containing the gene trmA coding for S-adenosyl-L-methionine-dependent tRNA (uracil-54,C5)-MTase. The phylogenetic analysis of TrmFO sequences suggests an ancient origin of this enzyme in bacteria.


Asunto(s)
Evolución Molecular , Ácido Fólico/fisiología , Uracilo/metabolismo , ARNt Metiltransferasas/análisis , Bacillus subtilis/enzimología , ARNt Metiltransferasas/fisiología
16.
J Biol Chem ; 282(38): 27744-53, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17652090

RESUMEN

The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Guanosina/química , ARN de Transferencia/química , ARN/química , Proteínas de Saccharomyces cerevisiae/fisiología , ARNt Metiltransferasas/metabolismo , Cromatografía Líquida de Alta Presión , Clonación Molecular , Citoplasma/metabolismo , Mitocondrias/metabolismo , Mutación , Consumo de Oxígeno , Estructura Terciaria de Proteína , ARN Mitocondrial , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fracciones Subcelulares/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología
17.
BMC Mol Biol ; 7: 23, 2006 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-16848900

RESUMEN

BACKGROUND: Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified. Interestingly, it was found that tRNA methylation, one of the most common modifications, can be introduced by S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases) that belong to two structurally and phylogenetically unrelated protein superfamilies: RFM and SPOUT. RESULTS: As a part of a large-scale project aiming at characterization of a complete set of RNA modification enzymes of model organisms, we have studied the Escherichia coli proteins YibK, LasT, YfhQ, and YbeA for their ability to introduce the last unassigned methylations of ribose at positions 32 and 34 of the tRNA anticodon loop. We found that YfhQ catalyzes the AdoMet-dependent formation of Cm32 or Um32 in tRNASer1 and tRNAGln2 and that an E. coli strain with a disrupted yfhQ gene lacks the tRNA:Cm32/Um32 methyltransferase activity. Thus, we propose to rename YfhQ as TrMet(Xm32) according to the recently proposed, uniform nomenclature for all RNA modification enzymes, or TrmJ, according to the traditional nomenclature for bacterial tRNA MTases. CONCLUSION: Our results reveal that methylation at position 32 is carried out by completely unrelated TrMet(Xm32) enzymes in eukaryota and prokaryota (RFM superfamily member Trm7 and SPOUT superfamily member TrmJ, respectively), mirroring the scenario observed in the case of the m1G37 modification (introduced by the RFM member Trm5 in eukaryota and archaea, and by the SPOUT member TrmD in bacteria).


Asunto(s)
Proteínas de Escherichia coli/fisiología , ARNt Metiltransferasas/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células Eucariotas , Metilación , Células Procariotas , ARN de Transferencia/metabolismo , Terminología como Asunto , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
18.
Am J Hum Genet ; 79(2): 291-302, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16826519

RESUMEN

The human mitochondrial 12S ribosomal RNA (rRNA) A1555G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the A1555G mutation is a primary factor underlying the development of deafness but is not sufficient to produce a deafness phenotype. However, it has been proposed that nuclear-modifier genes modulate the phenotypic manifestation of the A1555G mutation. Here, we identified the nuclear-modifier gene TRMU, which encodes a highly conserved mitochondrial protein related to transfer RNA (tRNA) modification. Genotyping analysis of TRMU in 613 subjects from 1 Arab-Israeli kindred, 210 European (Italian pedigrees and Spanish pedigrees) families, and 31 Chinese pedigrees carrying the A1555G or the C1494T mutation revealed a missense mutation (G28T) altering an invariant amino acid residue (A10S) in the evolutionarily conserved N-terminal region of the TRMU protein. Interestingly, all 18 Arab-Israeli/Italian-Spanish matrilineal relatives carrying both the TRMU A10S and 12S rRNA A1555G mutations exhibited prelingual profound deafness. Functional analysis showed that this mutation did not affect importation of TRMU precursors into mitochondria. However, the homozygous A10S mutation leads to a marked failure in mitochondrial tRNA metabolisms, specifically reducing the steady-state levels of mitochondrial tRNA. As a consequence, these defects contribute to the impairment of mitochondrial-protein synthesis. Resultant biochemical defects aggravate the mitochondrial dysfunction associated with the A1555G mutation, exceeding the threshold for expressing the deafness phenotype. These findings indicate that the mutated TRMU, acting as a modifier factor, modulates the phenotypic manifestation of the deafness-associated 12S rRNA mutations.


Asunto(s)
Sordera/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Fenotipo , ARN Ribosómico/genética , ARN de Transferencia/metabolismo , ARN/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Femenino , Células HeLa , Humanos , Masculino , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Linaje , Procesamiento Postranscripcional del ARN/genética , ARN Mitocondrial , ARNt Metiltransferasas/fisiología
19.
J Biol Chem ; 280(32): 29151-7, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15944150

RESUMEN

Nuclear gene(s) have been shown to modulate the phenotypic expression of mitochondrial DNA mutations. We report here the identification and characterization of the yeast nuclear gene MTO2 encoding an evolutionarily conserved protein involved in mitochondrial tRNA modification. Interestingly, mto2 null mutants expressed a respiratory-deficient phenotype when coexisting with the C1409G mutation of mitochondrial 15 S rRNA at the very conservative site for human deafness-associated 12 S rRNA A1491G and C1409T mutations. Furthermore, the overall rate of mitochondrial translation was markedly reduced in a yeast mto2 strain in the wild type mitochondrial background, whereas mitochondrial protein synthesis was almost abolished in a yeast mto2 strain carrying the C1409G allele. The other interesting feature of mto2 mutants is the defective expression of mitochondrial genes, especially CYTB and COX1, but only when coexisting with the C1409G allele. These data strongly indicate that a product of MTO2 functionally interacts with the decoding region of 15 S rRNA, particularly at the site of the C1409G or A1491G mutation. In addition, we showed that yeast and human Mto2p localize in mitochondria. The isolated human MTO2 cDNA can partially restore the respiratory-deficient phenotype of yeast mto2 cells carrying the C1409G mutation. These functional conservations imply that human MTO2 may act as a modifier gene, modulating the phenotypic expression of the deafness-associated A1491G or C1409T mutation in mitochondrial 12 S rRNA.


Asunto(s)
Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Mutación , Paromomicina/farmacología , ARN Ribosómico/genética , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología , Alelos , Secuencia de Bases , Núcleo Celular/metabolismo , ADN Complementario/metabolismo , Sordera/genética , Resistencia a Medicamentos , Escherichia coli/metabolismo , Genotipo , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fenotipo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Mol Cells ; 19(2): 157-66, 2005 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15879697

RESUMEN

Transfer RNA (tRNA) is a key molecule to decode the genetic information on mRNA to amino aicds (protein), in a ribosome. For tRNA to fulfill its adopter function, tRNA should be processed into the standard length, and be post-transcriptionally modified. This modification step is essential for the tRNA to maintain the canonical L-shaped structure, which is required for the decoding function of tRNA. Otherwise, it has recently been proposed that modification procedure itself contributes to the RNA (re)folding, where the modification enzymes function as a kind of RNA chaperones. Recent genome analyses and post-genome (proteomics and transcriptomics) analyses have identified genes involved in the tRNA processings and modifications. Furthermore, post-genomic structural analysis has elucidated the structural basis for the tRNA maturation mechanism. In this paper, the recent progress of the structural biology of the tRNA processing and modification is reviewed.


Asunto(s)
Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , ARNt Metiltransferasas/fisiología , Aminoacil-ARNt Sintetasas , Animales , Humanos , ARN de Transferencia/genética , Ribosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...