Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.016
Filtrar
1.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003034

RESUMEN

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Eliminación de Residuos Líquidos , Hierro/química , Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Oxidación-Reducción , Radical Hidroxilo/química
2.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003035

RESUMEN

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Asunto(s)
Calcio , Hierro , Virgibacillus , Calcio/química , Hierro/química , Virgibacillus/metabolismo , Eliminación de Residuos Líquidos/métodos , Precipitación Química , Aguas Residuales/química , Biomineralización , Carbonato de Calcio/química
3.
J Environ Sci (China) ; 147: 310-321, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003049

RESUMEN

In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.


Asunto(s)
Betaína , Salinidad , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Betaína/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Anaerobiosis , Microbiota/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos
4.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
5.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003080

RESUMEN

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Asunto(s)
Restauración y Remediación Ambiental , Oxígeno , Petróleo , Contaminantes del Suelo , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Adsorción , Aguas Residuales/química , Oxígeno/química , Oxígeno/análisis , Eliminación de Residuos Líquidos/métodos , Restauración y Remediación Ambiental/métodos , Suelo/química , Catálisis
6.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003069

RESUMEN

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Asunto(s)
Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Nitrificación , Nitrógeno/metabolismo , Suelo/química , Desnitrificación , Aguas Residuales/química , Aguas del Alcantarillado/microbiología , Microbiología del Suelo , Zeolitas/química , Fósforo/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo
7.
Microb Cell Fact ; 23(1): 187, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951813

RESUMEN

BACKGROUND: Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION: Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.


Asunto(s)
Polihidroxialcanoatos , Aguas Residuales , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Fermentación , Bacterias/metabolismo , Biodegradación Ambiental
8.
Water Environ Res ; 96(7): e11072, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961619

RESUMEN

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days. When the SRT of the cascade system was reduced to 8 days the VSR (32-36%) was only slightly less than that of the reference digester that was operated at a 15-day SRT (39-43%). Specific hydrolysis rates in the first stage of the cascade system were 66-152% higher than those of the reference. Additionally, the cascade system exhibited relatively stable effluent concentrations of volatile fatty acids (VFAs: 100-120 mg/l), while the corresponding concentrations in the control effluent demonstrated greater fluctuations (100-160 mg/l). The cascade system's effluent pH and VFA/alkalinity ratios were consistently maintained within the optimal range. During a dynamic test when the feed total solids concentration was doubled, total VFA concentrations (85-120 mg/l) in the cascade system were noticeably less than those (100-170 mg/l) of the control, while the pH and VFA/alkalinity levels remained in a stable range. The cascade system achieved higher total solids (TS) content in the dewatered digestate (19.4-26.8%) than the control (17.4-22.1%), and E. coli log reductions (2.0-4.1 log MPN/g TS) were considerably higher (p < 0.05) than those in the control (1.3-2.9 log MPN/g TS). Overall, operating multiple CSTRs in cascade mode at typical SRTs and mixed sludge ratios enhanced the performance, stability digesters, and digestate quality of AD. PRACTITIONER POINTS: Enhanced digestion of mixed sludge digestion with cascade system. Increased hydrolysis rates in the cascade system compared to a reference CSTR. More stable conditions for methanogen growth at both steady and dynamic states. Improved dewaterability and E. coli reduction of digestate from the cascade system.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Aguas Residuales/química , Aguas del Alcantarillado/química , Ácidos Grasos Volátiles/metabolismo , Purificación del Agua/métodos
9.
Environ Geochem Health ; 46(8): 283, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963423

RESUMEN

Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.


Asunto(s)
Carbón Orgánico , Nanocompuestos , Fosfatos , Contaminantes Químicos del Agua , Carbón Orgánico/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Fosfatos/química , Adsorción , Concentración de Iones de Hidrógeno , Calcio/química , Purificación del Agua/métodos , Aguas Residuales/química
10.
J Environ Sci (China) ; 146: 140-148, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969442

RESUMEN

Sulfonamide antibiotics (SAs) widely used have potentially negative effects on human beings and ecosystems. Adsorption and advanced oxidation methods have been extensively applied in SAs wastewater treatment. In this study, compared with Al3+@BC500 and Fe3+@BC500, La3+@BC500 for activating persulfate (S2O82-) had the best effect removal performance of sulfadiazine (SDZ) and sulfamethoxazole (SMX). Morphology, acidity, oxygen-containing functional groups, and loading of La3+@BC500 were analyzed by techniques, including EA, BET, XRD, XPS, FT-IR. XRD results show that with the increase of La3+ loading, the surface characteristics of biochar gradually changed from CaCO3 to LaCO3OH. Through EPR technology, it is proved that LaCO3OH on the surface of La3+@BC500 can not only activate S2O82- to generate SO4-•, but also to produce •OH. In the optimization experiment, the optimal dosage of La3+ is between 0.05 and 0.2 (mol/L)/g. SDZ had a good removal effect at pH (5-9), but SMX had a good removal effect only at pH=3. Zeta potential also proves that the material is more stable under acidic conditions. The removal process of SDZ is more in accord with pseudo-first-order kinetics (R2=0.9869), while SMX is more in line with pseudo-second order kinetics (R2=0.9926).


Asunto(s)
Antibacterianos , Lantano , Sulfonamidas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Antibacterianos/química , Sulfonamidas/química , Lantano/química , Carbón Orgánico/química , Adsorción , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Aguas Residuales/química
11.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969443

RESUMEN

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Asunto(s)
Coque , Polimerizacion , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Sulfatos/química , Polímeros/química , Análisis de la Demanda Biológica de Oxígeno , Técnicas Electroquímicas/métodos
12.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969440

RESUMEN

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Asunto(s)
Electrodos , Filtración , Eliminación de Residuos Líquidos , Purificación del Agua , Purificación del Agua/métodos , Filtración/métodos , Eliminación de Residuos Líquidos/métodos , Aceites/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Emulsiones/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación
13.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969460

RESUMEN

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Asunto(s)
Reactores Biológicos , Carbón Orgánico , Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Aguas Residuales/química , Carbón Orgánico/química , Porcinos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Membranas Artificiales , Metano/metabolismo
14.
PLoS One ; 19(7): e0306330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968255

RESUMEN

The efficiency of aerobic biodegradation of distillery wastewater using various microbial cultures is intricately linked to process conditions. The study aimed to examine the aerobic biodegradation by a Bacillus bacteria under controlled dissolved oxygen tension (DOT) conditions as a novel approach in the treatment of sugar beet distillery stillage. The processes were conducted in a 2-L Biostat®B stirred-tank reactor (STR), at a temperature of 36°C, with aeration of 1.0 L/(L·min), and uncontrolled pH of the medium (an initial pH of 8.0). Each experiment was performed at a different DOT setpoint: 75%, 65% and 55% saturation, controlled through stirrer rotational speed adjustments. The study showed that the DOT setpoint did not influence the process efficiency, determined by the pollutant load removal expressed as COD, BOD5 and TOC. In all three experiments, the obtained reduction values of these parameters were comparable, falling within the narrow ranges of 78.6-78.7%, 97.3-98.0% and 75.0-76.4%, respectively. However, the DOT setpoint did influence the rate of process biodegradation. The removal rate of the pollutant load expressed as COD, was the lowest when DOT was set at 55% (0.48 g O2/(L•h)), and the highest when DOT was set at 65% (0.55 g O2/(L•h)). For biogenic elements (nitrogen and phosphorus), a beneficial effect was observed at a low setpoint of controlled DOT during biodegradation. The maximum extent of removal of both total nitrogen (54%) and total phosphorus (67.8%) was achieved at the lowest DOT setpoint (55%). The findings suggest that conducting the batch aerobic process biodegradation of sugar beet stillage at a relatively low DOT setpoint in the medium might achieve high efficiency pollutant load removal and potentially lead to a reduction in the process cost.


Asunto(s)
Beta vulgaris , Biodegradación Ambiental , Oxígeno , Beta vulgaris/metabolismo , Oxígeno/metabolismo , Aerobiosis , Reactores Biológicos/microbiología , Análisis de la Demanda Biológica de Oxígeno , Bacillus/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Residuos Industriales
15.
Arch Microbiol ; 206(8): 343, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967670

RESUMEN

Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.


Asunto(s)
Biodegradación Ambiental , Microalgas , Aguas Residuales , Microalgas/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Metales Pesados/metabolismo , Biomasa , Bacterias/metabolismo , Bacterias/genética , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos
16.
Water Environ Res ; 96(7): e11075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982895

RESUMEN

Partial nitritation (PN) is a novel treatment for nitrogen removal using aerobic ammonium oxidation with reduced oxygen requirements compared to conventional nitrification. This study evaluated the performance of the PN process and the factors influencing nitrogen removal from landfill leachate. During the reactivation of biomass, the results showed 70% ammonium removal, but only 20% total nitrogen removal. Further analysis showed that low nitrite accumulation and high nitrate production promoted the growth of nitrite-oxidizing bacteria (NOB). The ammonium removal activity after soaking the cultivated biomass in synthetic water and leachate was measured to be 0.57, 0.1, 0.17, and 0.25 g N•g VSS-1•d-1 for synthetic wastewater and leachate soaking for synthetic wastewater, 12 h, 3 days, and 7 days, respectively. The study found abundant ammonium-oxidizing bacteria (AOB) and NOBs in biomass soaked in synthetic wastewater. However, soaking in leachate promoted AOB growth and inhibited NOB growth making leachate suitable for PN. PRACTITIONER POINTS: The study found that with a longer leachate-soaking period for biomass, ammonium removal activity increases, which in turn increases ammonium conversions during the PN process. Ammonium-oxidizing bacteria (AOB) can acclimate to landfill leachate substrate and grow with a longer soaking period. Nitrite-oxidizing bacteria (NOB) were inhibited by landfill leachate substrate, which is beneficial for nitrite accumulation. Anabolized DO can convert nitrite to nitrate rapidly, which results in higher nitrate accumulation compared to nitrite accumulation. Hence, the DO level has to be sufficiently low to prevent nitrite oxidation and nitrate accumulation.


Asunto(s)
Compuestos de Amonio , Reactores Biológicos , Oxidación-Reducción , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Bacterias/metabolismo , Nitrificación , Eliminación de Residuos Líquidos/métodos , Nitritos/metabolismo , Nitritos/química
17.
Environ Monit Assess ; 196(8): 726, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995468

RESUMEN

The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.


Asunto(s)
Reactores Biológicos , Desnitrificación , Fermentación , Nitrificación , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Fenol/metabolismo , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental
18.
Sci Rep ; 14(1): 16004, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992288

RESUMEN

The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.


Asunto(s)
Antibacterianos , Microalgas , Microalgas/metabolismo , Antibacterianos/farmacología , Chlorella vulgaris/metabolismo , Técnicas de Cocultivo , Lactonas/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Contaminantes Químicos del Agua , Biodegradación Ambiental , Purificación del Agua/métodos
19.
Environ Monit Assess ; 196(8): 725, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990243

RESUMEN

UV filters and benzotriazole UV stabilizers are considered emerging contaminants in the environment. LC-MS/MS and GC-MS methods, involving a single solid phase extraction protocol, were developed and validated to determine eight UV filters and seven UV stabilizers, respectively in wastewater from a wastewater treatment plant (WWTP) in Lüneburg, Germany. The LC-MS/MS method exhibited extraction recoveries of ≥ 71% at six different fortification levels with limits of detection (LODs) range of 0.02 ng mL-1 - 0.09 ng mL-1. Extraction recoveries of 47 to 119% at six different fortification levels were obtained for the GC-MS method with LODs range of 0.01 - 0.09 ng mL-1. Among the UV filters, the highest mean concentration was determined for octocrylene (OCR) in influent (3.49 ng mL-1) while the highest mean concentration was measured for 2-hydroxy-4-octyloxybenzophenone (UV 531) in influent (0.44 ng mL-1) among the UV stabilizers. Potential risk to aquatic organisms was assessed by the risk quotient approach. Only OCR presented a high risk to aquatic invertebrates whereas 2-ethylhexyl 4-methoxycinnamate (EHMC) and 2-ethylhexyl salicylate (EHS) posed high risks to algae. Benzotriazole UV stabilizers presented negligible risks to aquatic invertebrates and fish. This work reports the detection of rarely studied 4-aminobenzoic acid (PABA) and UV 531 in WWTP influent and effluent. The occurrence and risk assessment of target benzotriazole UV stabilizers in wastewater from a German WWTP was demonstrated for the first time.


Asunto(s)
Monitoreo del Ambiente , Protectores Solares , Triazoles , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Alemania , Protectores Solares/análisis , Triazoles/análisis , Medición de Riesgo , Espectrometría de Masas en Tándem , Eliminación de Residuos Líquidos/métodos , Cromatografía de Gases y Espectrometría de Masas , Acrilatos/análisis , Cromatografía Liquida
20.
J Environ Manage ; 365: 121610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955048

RESUMEN

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.


Asunto(s)
Peróxido de Hidrógeno , Aguas Residuales , Aguas Residuales/química , Peróxido de Hidrógeno/química , Adsorción , Contaminantes Químicos del Agua/química , Compuestos de Anilina/química , Cerio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...