Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Chem Res Toxicol ; 37(6): 935-943, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761382

RESUMEN

Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.


Asunto(s)
Amitriptilina , Citocromo P-450 CYP3A , Compuestos Epoxi , Hepatocitos , Microsomas Hepáticos , Ratas Sprague-Dawley , Animales , Amitriptilina/metabolismo , Ratas , Citocromo P-450 CYP3A/metabolismo , Microsomas Hepáticos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Compuestos Epoxi/metabolismo , Compuestos Epoxi/toxicidad , Compuestos Epoxi/química , Glutatión/metabolismo , Células Cultivadas
2.
Biochemistry (Mosc) ; 89(3): 507-522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648769

RESUMEN

Some tricyclic antidepressants (TCAs), including amitriptyline (ATL), clomipramine (CLO), and desipramine (DES), are known to be effective for management of neuropathic pain. It was previously determined that ATL, CLO, and DES are capable of voltage-dependent blocking of NMDA receptors of glutamate (NMDAR), which play a key role in pathogenesis of neuropathic pain. Despite the similar structure of ATL, CLO, and DES, efficacy of their interaction with NMDAR varies significantly. In the study presented here, we applied molecular modeling methods to investigate the mechanism of binding of ATL, CLO, and DES to NMDAR and to identify structural features of the drugs that determine their inhibitory activity against NMDAR. Molecular docking of the studied TCAs into the NMDAR channel was performed. Conformational behavior of the obtained complexes in the lipid bilayer was simulated by the method of molecular dynamics (MD). A single binding site (upper) for the tertiary amines ATL and CLO and two binding sites (upper and lower) for the secondary amine DES were identified inside the NMDAR channel. The upper and lower binding sites are located along the channel axis at different distances from the extracellular side of the plasma membrane. MD simulation revealed that the position of DES in the lower site is stabilized only in the presence of sodium cation inside the NMDAR channel. DES binds more strongly to NMDAR compared to ATL and CLO due to simultaneous interaction of two hydrogen atoms of its cationic group with the asparagine residues of the ion pore of the receptor. This feature may be responsible for the stronger side effects of DES. It has been hypothesized that ATL binds to NMDAR less efficiently compared to DES and CLO due to its lower conformational mobility. The identified features of the structure- and cation-dependent mechanism of interaction between TCAs and NMDAR will help in the further development of effective and safe analgesic therapy.


Asunto(s)
Antidepresivos Tricíclicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/química , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/metabolismo , Antidepresivos Tricíclicos/química , Sitios de Unión , Amitriptilina/química , Amitriptilina/metabolismo , Amitriptilina/farmacología , Humanos , Clomipramina/farmacología , Clomipramina/química , Clomipramina/metabolismo , Cationes/metabolismo , Cationes/química , Desipramina/farmacología , Unión Proteica
3.
Environ Sci Pollut Res Int ; 31(13): 19649-19657, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38363510

RESUMEN

The uptake, translocation, and metabolization of four widely used drugs, amitriptyline, orphenadrine, lidocaine, and tramadol, were investigated in a laboratory study. Cress (Lepidium sativum L.) and pea (Pisum sativum L.) were employed as model plants. These plants were grown in tap water containing the selected pharmaceuticals at concentrations ranging from 0.010 to 10 mg L-1, whereby the latter concentration was employed for the (tentative) identification of drug-related metabolites formed within the plant. Thereby, mainly phase I metabolites were detected. Time-resolved uptake studies, with sampling after 1, 2, 4, 8, and 16 days, revealed that all four pharmaceuticals were taken up by the roots and further relocated to plant stem and leaves. Also in these studies, the corresponding phase I metabolites could be detected, and their translocation from root to stem (pea only) and finally leaves could be investigated.


Asunto(s)
Brassicaceae , Tramadol , Amitriptilina/metabolismo , Pisum sativum , Orfenadrina/metabolismo , Lidocaína/metabolismo , Plantas/metabolismo , Verduras , Preparaciones Farmacéuticas/metabolismo , Raíces de Plantas/metabolismo
4.
J Psychiatr Res ; 170: 375-386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215648

RESUMEN

Clinical and preclinical studies suggest that hippocampal astrocyte dysfunction is involved in the pathophysiology of depression; however, the underlying molecular mechanisms remain unclear. Here, we attempted to identify the hippocampal astrocytic transcripts associated with antidepressant effects in a mouse model of depression. We used a chronic corticosterone-induced mouse model of depression to assess the behavioral effects of amitriptyline, a tricyclic antidepressant. Hippocampal astrocytes were isolated using fluorescence-activated cell sorting, and RNA sequencing was performed to evaluate the transcriptional profiles associated with depressive effects and antidepressant responses. Depression model mice exhibited typical depression-like behaviors that improved after amitriptyline treatment; the depression group mice also had significantly reduced GFAP-positive astrocyte numbers in hippocampal subfields. Comprehensive transcriptome analysis of hippocampal astrocytes showed opposing responses to amitriptyline in depression group and control mice, suggesting the importance of using the depression model. Transcription factor 7 like 2 (TCF7L2) was the only upstream regulator gene altered in depression model mice and restored in amitriptyline-treated depression model mice. In fact, TCF7L2 expression was significantly decreased in the depression group. The level of TCF7L2 long non-coding RNA, which controls mRNA expression of the TCF7L2 gene, was also significantly decreased in this group and recovered after amitriptyline treatment. The Gene Ontology biological processes associated with astrocytic TCF7L2 included proliferation, differentiation, and cytokine production. We identified TCF7L2 as a gene associated with depression- and antidepressant-like behaviors in response to amitriptyline in hippocampal astrocytes. Our findings could provide valuable insights into the mechanism of astrocyte-mediated antidepressant effects.


Asunto(s)
Amitriptilina , Astrocitos , Ratones , Animales , Amitriptilina/farmacología , Amitriptilina/metabolismo , Astrocitos/metabolismo , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Hipocampo , Modelos Animales de Enfermedad
5.
Sci Total Environ ; 912: 169173, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064809

RESUMEN

In mammals, parental exposure to amitriptyline (AMI) has been proven to contribute to congenital disabilities in their offspring. However, no studies have paid attention to the adverse effects of parental exposure to amitriptyline on fish offspring. In this study, we exposed adult zebrafish (F0) to AMI (0.8 µg/L) for 21 days. Subsequently, these zebrafish (F0) were allowed to mate, and their offspring (F1) were collected to culture in clean water for 5 days. The mortality rate, average hatching time, and heart rate at 48 h post-fertilization (hpf) of F1 were investigated. Our results showed that parental exposure to AMI induced tachycardia and increased mortality in F1 zebrafish. Under a light/dark transition test, F1 larvae born from AMI-exposed parents exhibited lower locomotor activity in the dark period and decreased thigmotaxis in the light period. The transcriptome analysis showed that parental AMI exposure dysregulated some key pathways in their offspring. Through the prediction of key driver analysis, six differentially expressed genes (DEGs) were revealed as key driver genes involved in protein processing in endoplasmic reticulum (hspa5, hsp70.1, hsp90a), ribosome (rps27a) and PPAR signaling pathway (pparab and fabp2). Considering that the concentration of AMI residual components in natural water bodies may be over our test concentration (0.8 µg/L), our findings suggested that toxicity of parental exposure to the offspring of fish should receive greater attention.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Pez Cebra/fisiología , Amitriptilina/toxicidad , Amitriptilina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Larva , Perciformes/metabolismo , Expresión Génica , Agua/metabolismo , Mamíferos/metabolismo
6.
Redox Biol ; 59: 102596, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610223

RESUMEN

Alcoholic (ASH) and nonalcoholic. (NASH).steatohepatitis are advanced.stages.of.fatty.liver.disease.Methionine adenosyltransferase 1A (MAT1A) plays a key role in hepatic methionine metabolism and germline Mat1a deletion in mice promotes NASH. Acid sphingomyelinase (ASMase) triggers hepatocellular apoptosis and liver fibrosis and has been shown to downregulate MAT1A expression in the context of fulminant liver failure. Given the role of ASMase in steatohepatitis development, we investigated the status of ASMase in Mat1a-/- mice and the regulation of ASMase by SAM/SAH. Consistent with its role in NASH, Mat1a-/- mice fed a choline-deficient (CD) diet exhibited macrosteatosis, inflammation, fibrosis and liver injury as well as reduced total and mitochondrial GSH levels. Our data uncovered an increased basal expression and activity of ASMase but not neutral SMase in Mat1a-/- mice, which further increased upon CD feeding. Interestingly, adenovirus-mediated shRNA expression targeting ASMase reduced ASMase activity and protected Mat1a-/- mice against CD diet-induced NASH. Similar results were observed in CD fed Mat1a-/- mice by pharmacological inhibition of ASMase with amitriptyline. Moreover, Mat1a/ASMase double knockout mice were resistant to CD-induced NASH. ASMase knockdown protected wild type mice against NASH induced by feeding a diet deficient in methionine and choline. Furthermore, Mat1a-/- mice developed acute-on-chronic ASH and this outcome was ameliorated by amitriptyline treatment. In vitro data in primary mouse hepatocytes revealed that decreased SAM/SAH ratio increased ASMase mRNA level and activity. MAT1A and ASMase mRNA levels exhibited an inverse correlation in liver samples from patients with ASH and NASH. Thus, disruption of methionine metabolism sensitizes to steatohepatitis by ASMase activation via decreased SAM/SAH. These findings imply that MAT1A deletion and ASMase activation engage in a self-sustained loop of relevance for steatohepatitis.


Asunto(s)
Hepatitis , Metionina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Amitriptilina/farmacología , Amitriptilina/metabolismo , Colina , Dieta , Modelos Animales de Enfermedad , Hígado/metabolismo , Metionina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Racemetionina/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Hepatitis/metabolismo
7.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36038749

RESUMEN

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Asunto(s)
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacología , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Desipramina/metabolismo , Desipramina/farmacología , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacología , Isquemia/metabolismo , Ratones , Proteómica
8.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806049

RESUMEN

Numerous studies have confirmed that 3,4-Methylenedioxymethamphetamine (MDMA) produces long-lasting changes to the density of the serotonin reuptake transporter (SERT). Amitriptyline (AMI) has been shown to exert neuroprotective properties in neuropathologic injury. Here, we used a SERT-specific radionuclide, 4-[18F]-ADAM, to assess the longitudinal alterations in SERT binding and evaluate the synergistic neuroprotective effect of AMI in a rat MDMA model. In response to MDMA treatment regimens, SERT binding was significantly reduced in rat brains. Region-specific recovery rate (normalized to baseline) in the MDMA group at day 14 was 71.29% ± 3.21%, and progressively increased to 90.90% ± 7.63% at day 35. AMI dramatically increased SERT binding in all brain regions, enhancing average ~18% recovery rate at day 14 when compared with the MDMA group. The immunochemical staining revealed that AMI markedly increased the serotonergic fiber density in the cingulate and thalamus after MDMA-induction, and confirmed the PET findings. Using in vivo longitudinal PET imaging, we demonstrated that SERT recovery was positively correlated with the duration of MDMA abstinence, implying that lower SERT densities in MDMA-induced rats reflected neurotoxic effects and were (varied) region-specific and reversible. AMI globally accelerated the recovery rate of SERT binding and increased SERT fiber density with possible neuroprotective effects.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Fármacos Neuroprotectores , Amitriptilina/metabolismo , Animales , Encéfalo/metabolismo , Radioisótopos de Flúor , N-Metil-3,4-metilenodioxianfetamina/farmacología , Fármacos Neuroprotectores/farmacología , Tomografía de Emisión de Positrones/métodos , Ratas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
9.
Arch Microbiol ; 204(4): 230, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35355118

RESUMEN

This study investigates the effects of antidepressants fluoxetine, sertraline, and amitriptyline on the development of antibiotic resistance in clinical Acinetobacter baumannii isolates. The isolates were exposed to fluoxetine, sertraline, and amitriptyline for 30 days, respectively. The bacteria that developed resistance to gentamicin, imipenem, colistin, and ciprofloxacin were isolated and expression levels of some antibiotic-resistance genes were determined by quantitative reverse-transcriptase PCR. Before and after the exposure, minimum inhibitory concentration (MIC) values of the bacteria were determined by the microdilution method. The statistical analysis was performed using Student's t test. A time-dependent increase was observed in the number of bacteria that developed resistance and increased the MIC value. After exposure to fluoxetine and sertraline, decreases were observed for efflux and outer membrane porin genes in isolates that developed colistin resistance, and increases were observed in isolates that developed ciprofloxacin resistance. These observations suggest that these antidepressants have similar effects on the development of resistance. While the exposure to fluoxetine did not result in the development of resistance to imipenem, it was observed after exposure to sertraline and amitriptyline, and a common decrease in ompA gene expression was determined in these isolates. To our knowledge, the comparative effects of selected antidepressants on the development of antibiotic resistance in A. baumannii are reported and presented in the literature here for the first time.


Asunto(s)
Acinetobacter baumannii , Amitriptilina/metabolismo , Amitriptilina/farmacología , Antidepresivos/metabolismo , Antidepresivos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Fluoxetina/metabolismo , Fluoxetina/farmacología , Humanos , Sertralina/metabolismo , Sertralina/farmacología
10.
Per Med ; 19(2): 113-123, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35118877

RESUMEN

Background: The research considers the impact of genotype-inferred variability on blood levels of amitriptyline and its main metabolites, as may be moderated by phenocopying. Patients & methods:CYP2D6 and CYP2C19 genotypes, and serum concentrations of amitriptyline, nortriptyline and hydroxymetabolites, were determined in 33 outpatients. Co-medications were reviewed to identify CYP inhibition risk. Results: CYP2C19 metabolizer status explained interpatient variation in nortriptyline to amitriptyline concentration ratios. The hydroxymetabolite to parent ratios increased with higher CYP2D6 activity scores and lower CYP2D6 inhibition risk. In patients at high CYP2D6 inhibition risk, the amitriptyline + nortriptyline concentration was, on average, 52% above the higher end of expected ranges. Conclusion: Practical construal of pharmacogenetics and drug interactions tantamount to aberrant metabolism can facilitate patient-tailored use of the established drug.


Amitriptyline is an established drug in managing depression and neuropathic pain. Body exposure to amitriptyline and its by-products is influenced by enzymes activities, which are subject to genetic variation, whereas other medications in a patient's treatment regimen may alter drug breakdown. To study these implications, genetic testing was conducted in 33 outpatients on amitriptyline therapy, alongside measurement of drug concentrations in blood and consideration of any co-administered medications. Breakdown of amitriptyline to nortriptyline was associated with the genetically determined status of patients. Subjects at high risk of having their rate for further breakdown delayed by other drugs had higher blood levels than expected in normal cases. A proportion of variation observed in blood drug concentrations across individuals with same genetic results could be explained by actions of drugs received concurrently. Supportive evidence is provided on the integration of drug interaction information with insights from genetic testing for patient-tailored pharmacotherapy that attempts to mitigate the possibility of missing an intended benefit or the risk of adverse events due to altered blood levels.


Asunto(s)
Amitriptilina , Nortriptilina , Amitriptilina/metabolismo , Amitriptilina/uso terapéutico , Antidepresivos Tricíclicos/efectos adversos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Farmacogenética
11.
Pest Manag Sci ; 78(6): 2240-2249, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35191608

RESUMEN

BACKGROUND: Fungicide resistance has become a serious problem for different mode of action groups except for uncouplers, which makes their resistance mechanism a hot topic, which until now, has not been well clarified. SYP-14288, a newly developed diarylamine fungicide modeled on fluazinam, has shown good toxicity to both oomycete and fungus by the action of uncoupling. In this research, the resistance of Phytophthora capsici to SYP-14288 was studied to clarify the resistance mechanism of uncouplers. RESULTS: The toxicity tests of resistant strains against SYP-14288 showed multidrug resistance. The high-performance liquid chromatography (HPLC) results showed that resistant strains could efflux the fungicide, and this ability could be inhibited by the efflux pump inhibitor amitriptyline. The target protein of amitriptyline is P-glycoprotein (P-gp), which was overexpressed in resistant strains. Three products of nitrate reduction of SYP-14288 were detected and determined by HPLC-Q-TOF. Eight cytochrome P450 monooxygenase (P450) proteins were differentially involved in the reduction reaction. CONCLUSION: Both fungicide efflux and detoxification metabolism were involved in the resistance mechanisms of P. capsici to SYP-14288. © 2022 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Phytophthora , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Amitriptilina/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a Múltiples Medicamentos , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Phytophthora/metabolismo , Enfermedades de las Plantas/microbiología
12.
J Am Soc Mass Spectrom ; 33(3): 412-419, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35084848

RESUMEN

Workplace chemical exposures are a major source of occupational injury. Although over half of these are skin exposures, exposomics research often focuses on chemical levels in the air or in worker biofluids such as blood and urine. Until now, one limitation has been the lack of methods to quantitatively measure surface chemical transfer. Outside the realm of harmful chemicals, the small molecules we leave behind on surfaces can also reveal important aspects of human behavior. In this study, we developed a swab-based quantitative approach to determine small molecule concentrations across common surfaces. We demonstrate its utility using one drug, cyclobenzaprine, on metal surfaces, and two human-derived metabolites, carnitine and phenylacetylglutamine, on four common surfaces: linoleum flooring, plastified laboratory workbench, metal, and Plexiglas. We observed peak areas proportional to surface analyte concentrations at 45 min and 1 week after deposition, enabling quantification of molecule abundance on workplace built environment surfaces. In contrast, this method was unsuitable for analysis of oleanolic acid, for which we did not observe a strong linear proportional relationship following swab-based recovery from surfaces. Overall, this method paves the way for future quantitative exposomics studies in analyte-specific and surface-specific frameworks.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Lugar de Trabajo , Amitriptilina/análogos & derivados , Amitriptilina/análisis , Amitriptilina/metabolismo , Carnitina/análisis , Carnitina/metabolismo , Glutamina/análogos & derivados , Glutamina/análisis , Glutamina/metabolismo , Humanos
13.
Drug Deliv Transl Res ; 12(4): 805-815, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886076

RESUMEN

Amitriptyline, administered orally, is currently one of the treatment options for the management of neuropathic pain and migraine. Because of the physicochemical properties of the molecule, amitriptyline is also a promising candidate for delivery as a topical analgesic. Here we report the dermal delivery of amitriptyline from a range of simple formulations. The first stage of the work required the conversion of amitriptyline hydrochloride to the free base form as confirmed by nuclear magnetic resonance (NMR). Distribution coefficient values were measured at pH 6, 6.5, 7, and 7.4. Solubility and stability of amitriptyline were assessed prior to conducting in vitro permeation and mass balance studies. The compound demonstrated instability in phosphate-buffered saline (PBS) dependent on pH. Volatile formulations comprising of isopropyl alcohol (IPA) and isopropyl myristate (IPM) or propylene glycol (PG) were evaluated in porcine skin under finite dose conditions. Compared with neat IPM, the IPM:IPA vehicles promoted 8-fold and 5-fold increases in the amount of amitriptyline that permeated at 24 h. Formulations containing PG also appear to be promising vehicles for dermal delivery of amitriptyline, typically delivering higher amounts of amitriptyline than the IPM:IPA vehicles. The results reported here suggest that further optimization of topical amitriptyline formulations should be pursued towards development of a product for clinical investigational studies.


Asunto(s)
Analgesia , Absorción Cutánea , Administración Cutánea , Amitriptilina/metabolismo , Analgésicos , Animales , Excipientes , Propilenglicol/química , Piel/metabolismo , Porcinos
14.
Br J Pharmacol ; 179(12): 2953-2968, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34904226

RESUMEN

BACKGROUND AND PURPOSE: Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and BP control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD). EXPERIMENTAL APPROACH: The effect of fluoxetine, amitriptyline and recently developed Kir inhibitor, VU0134992, on the activity of Kir 4.1, Kir 4.1/Kir 5.1 and ENaC were tested using electrophysiological approaches in CHO cells transfected with respective channel subunits, cultured polarized epithelial mCCDcl1 cells and freshly isolated rat and human CCD tubules. To test the effect of pharmacological Kir 4.1/Kir 5.1 inhibition on electrolyte homeostasis in vivo and corresponding changes in distal tubule transport, Dahl salt-sensitive rats were injected with amitriptyline (15 mg·kg-1 ·day-1 ) for 3 days. KEY RESULTS: We found that inhibition of Kir 4.1/Kir 5.1, but not the Kir 4.1 channel, depolarizes the cell membrane, induces the elevation of intracellular Ca2+ concentration and suppresses ENaC activity. Furthermore, we demonstrate that amitriptyline administration leads to a significant drop in plasma K+ level, triggering sodium excretion and diuresis. CONCLUSION AND IMPLICATIONS: The present data uncover a specific role of the Kir 4.1/Kir 5.1 channel in the modulation of ENaC activity and emphasize the potential for using Kir 4.1/Kir 5.1 inhibitors to regulate electrolyte homeostasis and BP.


Asunto(s)
Túbulos Renales Colectores , Canales de Potasio de Rectificación Interna , Amitriptilina/metabolismo , Amitriptilina/farmacología , Animales , Cricetinae , Cricetulus , Electrólitos/metabolismo , Electrólitos/farmacología , Canales Epiteliales de Sodio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/farmacología , Ratas , Ratas Endogámicas Dahl , Sodio/metabolismo
15.
Arch Biochem Biophys ; 698: 108677, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33197431

RESUMEN

We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A/metabolismo , Etanol/toxicidad , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Secuencia de Aminoácidos , Amitriptilina/metabolismo , Benzoflavonas/farmacología , Citocromo P-450 CYP2E1/análisis , Citocromo P-450 CYP3A/análisis , Activadores de Enzimas/farmacología , Femenino , Humanos , Ivermectina/metabolismo , Masculino , Midazolam/metabolismo , Nitrofenoles/metabolismo , Quinolinas/metabolismo
16.
Biomed Chromatogr ; 33(12): e4679, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31415098

RESUMEN

Amitriptyline (AMI) has been in use for decades in treating depression and more recently for the management of neuropathic pain. A highly sensitive and specific LC-tandem mass spectrometry method was developed for simultaneous determination of AMI, its active metabolite nortriptyline (NOR) and their hydroxy-metabolites in human serum, using deuterated AMI and NOR as internal standards. The isobaric E-10-hydroxyamitriptyline (E-OH AMI), Z-10-hydroxyamitriptyline (Z-OH AMI), E-10-hydroxynortriptyline (E-OH NOR) and Z-10-hydroxynortriptyline (Z-OH NOR), together with their parent compounds, were separated on an ACE C18 column using a simple protein precipitation method, followed by dilution and analysis using positive electrospray ionisation with multiple reaction monitoring. The total run time was 6 min with elution of E-OH AMI, E-OH NOR, Z-OH AMI, Z-OH NOR, AMI (+ deuterated AMI) and NOR (+ deuterated NOR) at 1.21, 1.28, 1.66, 1.71, 2.50 and 2.59 min, respectively. The method was validated in human serum with a lower limit of quantitation of 0.5 ng/mL for all analytes. A linear response function was established for the range of concentrations 0.5-400 ng/mL (r2 > .999). The practical assay was applied on samples from patients on AMI, genotyped for CYP2C19 and CYP2D6, to understand the influence of metaboliser status and concomitant medication on therapeutic drug monitoring.


Asunto(s)
Amitriptilina , Cromatografía Liquida/métodos , Nortriptilina , Espectrometría de Masas en Tándem/métodos , Anciano , Amitriptilina/análogos & derivados , Amitriptilina/sangre , Amitriptilina/metabolismo , Monitoreo de Drogas , Humanos , Límite de Detección , Modelos Lineales , Nortriptilina/análogos & derivados , Nortriptilina/sangre , Nortriptilina/metabolismo , Reproducibilidad de los Resultados
17.
J Pharm Pharmacol ; 71(7): 1133-1141, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31037729

RESUMEN

OBJECTIVES: Antidepressants need to penetrate the blood-brain barrier (BBB) to exert their functions in the central nervous system. Breast cancer resistance protein (BCRP), an efflux transporter abundantly expressed in the BBB, prevents the accumulation of many drugs in the brain. This study aimed to identify whether five commonly used antidepressants (sertraline, duloxetine, fluoxetine, amitriptyline and mirtazapine) are BCRP substrates. METHODS: A combination of bidirectional transport and intracellular accumulation experiments was conducted on BCRP-overexpressing MDCKII and wild-type (WT) cells, and in situ brain perfusion was conducted in rats. KEY FINDINGS: The bidirectional transport study revealed that the net efflux ratio (NER) of sertraline reached 2.08 but decreased to 1.06 when co-incubated with Ko143, a selective BCRP inhibitor. Conversely, the other four antidepressants did not appear to be BCRP substrates, due to their low NER values (<1.5). The accumulation of sertraline in MDCKII-BCRP cells was significantly lower than that in MDCKII-WT cells. The presence of Ko143 significantly increased the sertraline accumulation in MDCKII-BCRP cells but not in MDCKII-WT cells. Brain perfusion showed that the permeability of 1 and 5 µm sertraline was significantly higher in the presence of Ko143. CONCLUSIONS: Taken together, BCRP is involved in sertraline efflux.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antidepresivos/metabolismo , Amitriptilina/metabolismo , Animales , Antidepresivos/química , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Línea Celular Tumoral , Clorhidrato de Duloxetina/metabolismo , Fluoxetina/metabolismo , Humanos , Mirtazapina/metabolismo , Proteínas de Neoplasias , Ratas , Ratas Sprague-Dawley , Sertralina/metabolismo
18.
J Pharmacol Sci ; 140(1): 54-61, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31105024

RESUMEN

The wide spread use of central nervous system (CNS) drugs has caused thousands of deaths in clinical practice while there are few antidotes or effective treatments to decrease their accumulation in CNS. In this study, we used amitriptyline (AMI) and dexamethasone (DEX) as the corresponding poisoning and pre-protecting drugs, respectively, to study whether DEX has the potential to reduce AMI accumulation in brain. By measuring the pharmacokinetic data of AMI and its main metabolite nortriptyline (NOR), we found that DEX possibly accelerated the metabolism and elimination of AMI with minimal effects on the concentrations of NOR in blood. Nevertheless, the results indicated that DEX reduced the brain/plasma concentration ratio of AMI and NOR, even if the plasma concentration of NOR had an upward trend. Western blot results showed the overexpression of cyp3a2 and P-gp in rat liver and brain capillaries tissues. We propose that cyp3a2 and P-gp could be upregulated in the liver and blood-brain barrier (BBB) when using DEX. Further experiments suggest that DEX may serve as the ligand of PXR to induce P-gp expression.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Amitriptilina/farmacocinética , Antidepresivos Tricíclicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Citocromo P-450 CYP3A/metabolismo , Dexametasona/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Amitriptilina/sangre , Amitriptilina/metabolismo , Amitriptilina/envenenamiento , Animales , Antidepresivos Tricíclicos/sangre , Antidepresivos Tricíclicos/metabolismo , Antidepresivos Tricíclicos/envenenamiento , Encéfalo/irrigación sanguínea , Capilares/metabolismo , Citocromo P-450 CYP3A/genética , Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas Sprague-Dawley , Regulación hacia Arriba
19.
Drug Metab Pers Ther ; 34(2)2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31145691

RESUMEN

Regulatory developments and clinical implementation, or the lack thereof, are primary clinchers, in the enduring endeavors to realize the translational quality of pharmacogenetics. Here, we present the case of amitriptyline, an established drug with pharmacogenetic implications. The integration of pharmacogenetic information in the official product literature and throughout the evaluation of safety concerns is considered. In our opinion, apart from emboldening genomic research in drug development and the valid pursuit towards global harmonization in the field, it is rational to look into the applicability of the data we have today.


Asunto(s)
Amitriptilina/metabolismo , Regulación Gubernamental , Farmacogenética , Investigación Biomédica Traslacional , Humanos
20.
Sci Rep ; 9(1): 5629, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948767

RESUMEN

Oral intestinal adsorbents (enterosorbents) are orally administered materials which pass through the gut where they bind (adsorb) various substances. The enterosorbent Enterosgel (Polymethylsiloxane polyhdrate) is recommended as a symptomatic treatment for acute diarrhoea and chronic diarrhoea associated with irritable bowel syndrome (IBS). Since 1980's there have been many Enterosgel clinical trials, however, the detailed mechanism of Enterosgel action towards specific toxins and interaction with concomitantly administered medications has not been fully investigated. Our in vitro study assessed the adsorption capacity of Enterosgel for bacterial enterotoxins and endotoxin, bile acids and interaction with the pharmaceutical drugs; Cetirizine and Amitriptyline hydrochloride. Our data demonstrate the good adsorption capacity of Enterosgel for bacterial toxins associated with gastrointestinal infection, with a lower than the comparator charcoal Charcodote capacity for bile acids whose levels can be raised in IBS patients. Adsorption capacity for the two drugs varied but was significantly lower than Charcodote. These findings suggest that the mechanism of Enterosgel action in the treatment of gastrointestinal infection or IBS is adsorption of target molecules followed by removal from the body. This therapy offers a drug free approach to prevention and treatment of infectious and chronic non-infectious diseases, where intestinal flora and endotoxemia play a role.


Asunto(s)
Enteroadsorción/métodos , Siliconas/química , Siliconas/farmacología , Adsorción , Amitriptilina/metabolismo , Toxinas Bacterianas/metabolismo , Ácidos y Sales Biliares/metabolismo , Cetirizina/metabolismo , Carbón Orgánico , Diarrea/tratamiento farmacológico , Enfermedades Gastrointestinales/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome del Colon Irritable/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...