Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.892
Filtrar
1.
J Agric Food Chem ; 72(29): 16076-16094, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39010820

RESUMEN

Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.


Asunto(s)
Contaminación de Alimentos , Toxinas Marinas , Toxinas Marinas/análisis , Inmunoensayo/métodos , Animales , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Humanos , Mariscos/análisis , Peces , Alimentos Marinos/análisis
2.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998965

RESUMEN

In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 µg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 µg/mL and 0.46 µg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Productos Lácteos , Lactoferrina , Lactoferrina/análisis , Lactoferrina/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Productos Lácteos/análisis , Fluorescencia , Límite de Detección , Espectrometría de Fluorescencia/métodos , Análisis de los Alimentos/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos
3.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998979

RESUMEN

To reduce unwanted fat bloom in the manufacturing and storage of chocolates, detailed knowledge of the chemical composition and molecular mobility of the oils and fats contained is required. Although the formation of fat bloom on chocolate products has been studied for many decades with regard to its prevention and reduction, questions on the molecular level still remain to be answered. Chocolate products with nut-based fillings are especially prone to undesirable fat bloom. The chemical composition of fat bloom is thought to be dominated by the triacylglycerides of the chocolate matrix, which migrate to the chocolate's surface and recrystallize there. Migration of oils from the fillings into the chocolate as driving force for fat bloom formation is an additional factor in the discussion. In this work, the migration was studied and confirmed by MRI, while the chemical composition of the fat bloom was measured by NMR spectroscopy and HPLC-MS, revealing the most important triacylglycerides in the fat bloom. The combination of HPLC-MS with NMR spectroscopy at 800 MHz allows for detailed chemical structure determination. A rapid routine was developed combining the two modalities, which was then applied to investigate the aging, the impact of chocolate composition, and the influence of hazelnut fillings processing parameters, such as the degree of roasting and grinding of the nuts or the mixing time, on fat bloom formation.


Asunto(s)
Chocolate , Espectroscopía de Resonancia Magnética , Chocolate/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Triglicéridos/análisis , Triglicéridos/química , Cacao/química , Análisis de los Alimentos/métodos , Corylus/química , Cromatografía Líquida con Espectrometría de Masas
4.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999005

RESUMEN

BACKGROUND: Lincomycin (LIN) is extensively used for treating diseases in livestock and promoting growth in food animal farming, and it is frequently found in both the environment and in food products. Currently, most of the methods for detecting lincomycin either lack sensitivity and precision or require the use of costly equipment such as mass spectrometers. RESULT: In this study, we developed a reliable high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) method and used it to detect LIN residue in 11 types of matrices (pig liver and muscle; chicken kidney and liver; cow fat, liver and milk; goat muscle, liver and milk; and eggs) for the first time. The tissue homogenates and liquid samples were extracted via liquid-liquid extraction, and subsequently purified and enriched via sorbent and solid phase extraction (SPE). After nitrogen drying, the products were derivatized with p-toluene sulfonyl isocyanic acid (PTSI) (100 µL) for 30 min at room temperature. Finally, the derivatized products were analyzed by HPLC at 227 nm. Under the optimized conditions, the method displayed impressive performance and demonstrated its reliability and practicability, with a limit of detection (LOD) and quantification (LOQ) of LIN in each matrix of 25-40 µg/kg and 40-60 µg/kg, respectively. The recovery ranged from 71.11% to 98.30%. CONCLUSIONS: The results showed that this method had great selectivity, high sensitivity, satisfactory recovery and cost-effectiveness-fulfilling the criteria in drug residue and actual detection requirements-and proved to have broad applicability in the field of detecting LIN in animal-derived foods.


Asunto(s)
Lincomicina , Cromatografía Líquida de Alta Presión/métodos , Animales , Lincomicina/análisis , Análisis de los Alimentos/métodos , Leche/química , Porcinos , Pollos , Límite de Detección , Contaminación de Alimentos/análisis , Reproducibilidad de los Resultados , Análisis Costo-Beneficio , Cabras , Bovinos , Huevos/análisis , Residuos de Medicamentos/análisis
5.
Anal Methods ; 16(28): 4733-4742, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38949067

RESUMEN

This work deals with the rapid and simple determination of the probable carcinogen ethyl carbamate (EC), which is naturally present in fermented food products. An undemanding, robust, and rapid pre-column derivatization utilizing a 9-xanthydrol reagent has been developed. The resulting derivative was subsequently analysed by reversed-phase high-performance liquid chromatography coupled with fluorescence detection. As a result of the thorough optimisation of the chromatographic conditions, the run was completed in just 5 minutes, considerably speeding up the usual time of EC separation (30-60 min). Thanks to the fast separation, satisfactory yields (around 90%), negligible matrix effects, no interfering peaks, very low detection limit, and simple sample pre-treatment (for the very first time, the derivatization was performed in the presence of light and without any extraction step), the proposed method represents a significant improvement of the EC determination protocol used so far. After method validation, a total of fifty food samples were subjected to analysis without any additional sample pre-treatment despite their diverse matrix. Due to its robustness, simplicity, and low time, cost, and manual demands, this method is suitable for rapid screening of EC in both final food products and during their production.


Asunto(s)
Análisis de los Alimentos , Contaminación de Alimentos , Uretano , Uretano/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Límite de Detección , Carcinógenos/análisis , Reproducibilidad de los Resultados
6.
Shokuhin Eiseigaku Zasshi ; 65(3): 61-66, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034137

RESUMEN

Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.


Asunto(s)
Carica , Alimentos Modificados Genéticamente , Plantas Modificadas Genéticamente , Carica/genética , ADN de Plantas/genética , ADN de Plantas/análisis , Análisis de los Alimentos/métodos , Inocuidad de los Alimentos , Japón , Plantas Modificadas Genéticamente/genética , Potyvirus/genética , Potyvirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados
7.
Shokuhin Eiseigaku Zasshi ; 65(3): 72-77, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034139

RESUMEN

Ciguatera poisoning (CP) is one of the most frequent seafood poisonings across the globe. CP results from the consumption of fish flesh that has accumulated principal toxins known as ciguatoxins (CTXs), and it mainly occurs in tropical and subtropical regions. In Japan, incidents of CP have been reported primarily from Okinawa and Amami Islands in the subtropical area. Meanwhile, there have also been reports from Mainland sporadically. Since the amount of CTXs contained in fish flesh is extremely low, a highly sensitive detection method by LC-MS/MS is required. But the currently reported detection method is applicable only to specific equipment, and many laboratories have difficulty to respond CP. In this study, to prepare for the risk of nationwide CP, we researched a universal analytical method for CTXs based on LC-MS/MS. Using a water/acetonitrile mobile phase supplemented with lithium hydroxide and formic acid gave rise to prominent peaks of the stable [M+Li]+ions. As the [M+Li]+ions did not produce valid product ions even with high collision energy, the [M+Li]+ions of each analog were set for both precursor and product ions ([M+Li]+>[M+Li]+) and monitored under the multiple reaction monitoring (MRM) mode. With the method described above, analyses of nine CTX congeners were carried out. The limit of detection (LOD, S/N>5) and quantitation (LOQ, S/N>10) were estimated as 0.005-0.030 ng/mL and 0.010-0.061 ng/mL, respectively. When the 1 mL of extract solution is prepared from 5 g of the fish tissue, the LOD and LOQ will be at 0.001-0.006 µg/kg and 0.002-0.012 µg/kg, respectively. This result indicates that we could detect the required level of 0.175 µg/kg CTX1B equivalent in fish flesh which is recommended for safe consumption in Japan. This method is considered to be a universal analytical method without depending on the specific equipment. Thus it could contribute to improving the CP investigations in nationwide laboratories.


Asunto(s)
Ciguatoxinas , Espectrometría de Masas en Tándem , Ciguatoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Alimentos Marinos/análisis , Intoxicación por Ciguatera/diagnóstico , Análisis de los Alimentos/métodos , Animales , Contaminación de Alimentos/análisis , Japón , Cromatografía Líquida con Espectrometría de Masas
8.
Shokuhin Eiseigaku Zasshi ; 65(3): 48-52, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39034135

RESUMEN

Mysids are small crustaceans that are closely related to shrimp/prawns and crabs but not subject to food allergen labeling requirements for raw materials. In the past, a processed food that contained Japanese smelt (wakasagi) was suspected of producing a false-positive result in shrimp/prawn and crab allergen test because of the presence of consumed mysids. However, there was no reported methods to confirm mysid presence. Therefore, we developed a PCR method to detect mysids. The developed PCR method had high specificity for a mysid species, with no amplification observed from samples of shrimp, crab, krill, mantis shrimp, or the meat of Japanese smelt. In addition, DNA extracted from the internal organs of Japanese smelt was amplified by this PCR method, and sequencing revealed mysid DNA. This confirmed that mysids remained in the internal organs of Japanese smelt following consumption. This PCR method for mysid detection even amplified Japanese smelt-containing processed food samples that were suspected to have produced a false-positive result in shrimp/prawn and crab ELISA. Thus, this PCR method would enable to detect such false positives are caused by mysid contamination.


Asunto(s)
Alérgenos , Crustáceos , Reacción en Cadena de la Polimerasa , Animales , Reacción en Cadena de la Polimerasa/métodos , Alérgenos/análisis , Reacciones Falso Positivas , Contaminación de Alimentos/análisis , Hipersensibilidad a los Alimentos , Anomuros/genética , ADN/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Análisis de los Alimentos/métodos
9.
Sci Rep ; 14(1): 16594, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026016

RESUMEN

For the detection of food adulteration, sensitive and reproducible analytical methods are required. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is a highly sensitive method that can be used to obtain analytical fingerprints consisting of a variety of different components. Since the comparability of measurements carried out with different devices and at different times is not given, specific adulterants are usually detected in targeted analyses instead of analyzing the entire fingerprint. However, this comprehensive analysis is desirable in order to stay ahead in the race against food fraudsters, who are constantly adapting their adulterations to the latest state of the art in analytics. We have developed and optimized an approach that enables the separate processing of untargeted LC­HRMS data obtained from different devices and at different times. We demonstrate this by the successful determination of the geographical origin of honey samples using a random forest model. We then show that this approach can be applied to develop a continuously learning classification model and our final model, based on data from 835 samples, achieves a classification accuracy of 94% for 126 test samples from 6 different countries.


Asunto(s)
Análisis de los Alimentos , Aprendizaje Automático , Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Miel/análisis , Cromatografía Líquida con Espectrometría de Masas
10.
Compr Rev Food Sci Food Saf ; 23(4): e13385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031741

RESUMEN

Rising consumer awareness, coupled with advances in sensor technology, is propelling the food manufacturing industry to innovate and employ tools that ensure the production of safe, nutritious, and environmentally sustainable products. Amidst a plethora of nondestructive techniques available for evaluating the quality attributes of both raw and processed foods, the challenge lies in determining the most fitting solution for diverse products, given that each method possesses its unique strengths and limitations. This comprehensive review focuses on baked goods, wherein we delve into recently published literature on cutting-edge nondestructive methods to assess their feasibility for Industry 4.0 implementation. Emphasizing the need for quality control modalities that align with consumer expectations regarding sensory traits such as texture, flavor, appearance, and nutritional content, the review explores an array of advanced methodologies, including hyperspectral imaging, magnetic resonance imaging, terahertz, acoustics, ultrasound, X-ray systems, and infrared spectroscopy. By elucidating the principles, applications, and impacts of these techniques on the quality of baked goods, the review provides a thorough synthesis of the most current published studies and industry practices. It highlights how these methodologies enable defect detection, nutritional content prediction, texture evaluation, shelf-life forecasting, and real-time monitoring of baking processes. Additionally, the review addresses the inherent challenges these nondestructive techniques face, ranging from cost considerations to calibration, standardization, and the industry's overreliance on big data.


Asunto(s)
Culinaria , Culinaria/métodos , Análisis de los Alimentos/métodos , Control de Calidad , Valor Nutritivo , Calidad de los Alimentos
11.
Compr Rev Food Sci Food Saf ; 23(4): e13393, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031842

RESUMEN

Commercial applications of nanotechnology in the food industry are rapidly increasing. Accordingly, there is a simultaneous increase in the amount and diversity of nanowaste, which arise as byproducts in the production, use, disposal, or recycling processes of nanomaterials utilized in the food industry. The potential risks of this nanowaste to human health and the environment are alarming. It is of crucial significance to establish analytical methods and monitoring systems for nanowaste to ensure food safety. This review provides comprehensive information on nanowaste in foods as well as comparative material on existing and new analytical methods for the detection of nanowaste. The article is specifically focused on nanowaste in food systems. Moreover, the current techniques, challenges as well as potential use of new and progressive methods are underlined, further highlighting advances in technology, collaborative efforts, as well as future perspectives for effective nanowaste detection and tracking. Such detection and tracking of nanowaste are required in order to effectively manage this type ofwasted in foods. Although there are devices that utilize spectroscopy, spectrometry, microscopy/imaging, chromatography, separation/fractionation, light scattering, diffraction, optical, adsorption, diffusion, and centrifugation methods for this purpose, there are challenges to be overcome in relation to nanowaste as well as food matrix and method characteristics. New technologies such as radio-frequency identification, Internet of things, blockchain, data analytics, and machine learning are promising. However, the cooperation of international organizations, food sector, research, and political organizations is needed for effectively managing nanowaste. Future research efforts should be focused on addressing knowledge gaps and potential strategies for optimizing nanowaste detection and tracking processes.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Nanoestructuras/análisis , Inocuidad de los Alimentos/métodos , Nanotecnología/métodos , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos
12.
Anal Methods ; 16(24): 3859-3866, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38847307

RESUMEN

Methanol is a toxic alcohol contained in alcoholic beverages as a natural byproduct of fermentation or added intentionally to counterfeits to increase profit. To ensure consumer safety, many countries and the EU have established strict legislation limits for methanol content. Methanol concentration is mostly detected by laboratory instrumentation since mobile devices for routine on-site testing of beverages in distilleries, at border stations or even at home are not available. Here, we validated a handheld methanol detector for beverage analysis in an ISO 5725 interlaboratory trial: a total of 119 measurements were performed by 17 independent participants (distilleries, universities, authorities, and competence centers) from six countries on samples with relevant methanol concentrations (0.1, 1.5 vol%). The detector was based on a microporous separation filter and a nanostructured gas sensor allowing on-site measurement of methanol down to 0.01 vol% (in the liquid) within only 2 min by laymen. The detector showed excellent repeatability (<5.4%), reproducibility (<9.5%) and small bias (<0.012 vol%). Additional measurements on various methanol-spiked alcoholic beverages (whisky, rum, gin, vodka, tequila, port, sherry, liqueur) indicated that the detector is not interfered by environmental temperature and spirit composition, featuring excellent linearity (R2 > 0.99) down to methanol concentrations of 0.01 vol%. This device has been recently commercialized (Alivion Spark M-20) with comparable accuracy to the gold-standard gas chromatography and can be readily applied for final product inspection, intake control of raw materials or to identify toxic counterfeit products.


Asunto(s)
Bebidas Alcohólicas , Metanol , Metanol/análisis , Bebidas Alcohólicas/análisis , Reproducibilidad de los Resultados , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Laboratorios/normas
13.
Anal Methods ; 16(24): 3983-3992, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38853673

RESUMEN

Edible oil-based switchable-hydrophilicity solvent liquid-liquid microextraction was coupled with smartphone digital image colorimetry for the determination of total curcuminoids. Images of the colored extracts were captured in a laboratory-made colorimetric box, which were then split into their red-green-blue channels. Optimum extraction conditions were achieved using 550 µL of almond oil as the extraction solvent and 0.40 M sodium hydroxide for hydrolysis of the oil to the salt of its fatty acid. Phosphoric acid (2.0 mL, 4.0 M) was used as the hydrophilicity-switching trigger, while pH of the sample solution adjusted to 5.50 and extraction time of 1.0 min, were found to be optimum. Optimum detection conditions were achieved at a distance of 7.0 cm from the detection camera, a region of interest of 175 px2, a detection wavelength of 420 nm and 50.0% brightness of the light source. The limit of detection was found to be 0.020 µg mL-1. A good linearity was achieved as indicated by coefficients of determination above 0.9965. The proposed method was used for the determination of total curcuminoids in tea and turmeric samples with percentage relative recoveries of 95.0-105.0% and percentage relative standard deviations below 8.7%.


Asunto(s)
Colorimetría , Microextracción en Fase Líquida , Aceites de Plantas , Teléfono Inteligente , Microextracción en Fase Líquida/métodos , Colorimetría/métodos , Aceites de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Curcumina/análisis , Curcumina/química , Análisis de los Alimentos/métodos , Solventes/química , Límite de Detección
14.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893298

RESUMEN

Simple and sensitive determination of total antioxidant capacity (TAC) in food samples is highly desirable. In this work, an electrochemical platform was established based on a silica nanochannel film (SNF)-modified electrode, facilitating fast and highly sensitive analysis of TAC in colored food samples. SNF was grown on low-cost and readily available tin indium oxide (ITO) electrode. Fe3+-phenanthroline complex-Fe(III)(phen)3 was applied as the probe, and underwent chemical reduction to form Fe2+-phenanthroline complex-Fe(II)(phen)3 in the presence of antioxidants. Utilizing an oxidative voltage of +1 V, chronoamperometry was employed to measure the current generated by the electrochemical oxidation of Fe(II)(phen)3, allowing for the assessment of antioxidants. As the negatively charged SNF displayed remarkable enrichment towards positively charged Fe(II)(phen)3, the sensitivity of detection can be significantly improved. When Trolox was employed as the standard antioxidant, the electrochemical sensor demonstrated a linear detection range from 0.01 µM to 1 µM and from 1 µM to 1000 µM, with a limit of detection (LOD) of 3.9 nM. The detection performance is better that that of the conventional colorimetric method with a linear de range from 1 µM to 40 µM. Owing to the anti-interfering ability of nanochannels, direct determination of TAC in colored samples including coffee, tea, and edible oils was realized.


Asunto(s)
Antioxidantes , Técnicas Electroquímicas , Electrodos , Análisis de los Alimentos , Oxidación-Reducción , Antioxidantes/análisis , Antioxidantes/química , Técnicas Electroquímicas/métodos , Análisis de los Alimentos/métodos , Límite de Detección , Fenantrolinas/química , Dióxido de Silicio/química
15.
Molecules ; 29(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893376

RESUMEN

Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.


Asunto(s)
Ácido Elágico , Impresión Molecular , Extracción en Fase Sólida , Ácido Elágico/química , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos , Ácidos Borónicos/química , Polímeros Impresos Molecularmente/química , Análisis de los Alimentos/métodos , Nanoestructuras/química
16.
J Food Sci ; 89(7): 3935-3949, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865253

RESUMEN

Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.


Asunto(s)
Carbono , Análisis de los Alimentos , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación , Inocuidad de los Alimentos/métodos , Puntos Cuánticos/química , Humanos
17.
Anal Methods ; 16(26): 4216-4233, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38899503

RESUMEN

The authentication of edible oils has become increasingly important for ensuring product quality, safety, and compliance with regulatory standards. Some prevalent authenticity issues found in edible oils include blending expensive oils with cheaper substitutes or lower-grade oils, incorrect labeling regarding the oil's source or type, and falsely stating the oil's origin. Vibrational spectroscopy techniques, such as infrared (IR) and Raman spectroscopy, have emerged as effective tools for rapidly and non-destructively analyzing edible oils. This review paper offers a comprehensive overview of recent advancements in using vibrational spectroscopy for authenticating edible oils. The fundamental principles underlying vibrational spectroscopy are introduced and chemometric approaches that enhance the accuracy and reliability of edible oil authentication are summarized. Recent research trends highlighted in the review include authenticating newly introduced oils, identifying oils based on their specific origins, adopting handheld/portable spectrometers and hyperspectral imaging, and integrating modern data handling techniques into the use of vibrational spectroscopic techniques for edible oil authentication. Overall, this review provides insights into the current state-of-the-art techniques and prospects for utilizing vibrational spectroscopy in the authentication of edible oils, thereby facilitating quality control and consumer protection in the food industry.


Asunto(s)
Aceites de Plantas , Espectrometría Raman , Aceites de Plantas/química , Aceites de Plantas/análisis , Espectrometría Raman/métodos , Análisis de los Alimentos/métodos , Vibración , Espectrofotometría Infrarroja/métodos
18.
Food Res Int ; 188: 114488, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823841

RESUMEN

Direct analysis in real time-mass spectrometry (DART-MS) has evolved as an effective analytical technique for the rapid and accurate analysis of food samples. The current advancements of DART-MS in food analysis are described in this paper. We discussed the DART principles, which include devices, ionization mechanisms, and parameter settings. Numerous applications of DART-MS in the fields of food and food products analysis published during 2018-2023 were reviewed, including contamination detection, food authentication and traceability, and specific analyte analysis in the food matrix. Furthermore, the challenges and limitations of DART-MS, such as matrix effect, isobaric component analysis, cost considerations and accessibility, and compound selectivity and identification, were discussed as well.


Asunto(s)
Análisis de los Alimentos , Espectrometría de Masas , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Espectrometría de Masas/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124595, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850828

RESUMEN

The abuse of antibiotics has caused gradually increases drug-resistant bacterial strains that pose health risks. Herein, a sensitive SERS sensor coupled multivariate calibration was proposed for quantification of antibiotics in milk. Initially, octahedral gold-silver nanocages (Au@Ag MCs) were synthesized by Cu2O template etching method as SERS substrates, which enhanced the plasmonic effect through sharp edges and hollow nanostructures. Afterwards, five chemometric algorithms, like partial least square (PLS), uninformative variable elimination-PLS (UVE-PLS), competitive adaptive reweighted sampling-PLS (CARS-PLS), random frog-PLS (RF-PLS), and convolutional neural network (CNN) were applied for TTC and CAP. RF-PLS performed optimally for TTC and CAP (Rc = 0.9686, Rp = 0.9648, RPD = 3.79 for TTC and Rc = 0.9893, Rp = 0.9878, RPD = 5.88 for CAP). Furthermore, the detection limit of 0.0001 µg/mL for both TTC and CAP was obtained. Finally, satisfactory (p > 0.05) results were obtained with the standard HPLC method. Therefore, SERS combined RF-PLS could be applied for fast, nondestructive sensing of TTC and CAP in milk.


Asunto(s)
Antibacterianos , Oro , Nanopartículas del Metal , Leche , Plata , Espectrometría Raman , Oro/química , Plata/química , Antibacterianos/análisis , Espectrometría Raman/métodos , Leche/química , Nanopartículas del Metal/química , Calibración , Animales , Contaminación de Alimentos/análisis , Límite de Detección , Análisis de los Mínimos Cuadrados , Análisis de los Alimentos/métodos , Algoritmos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124612, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38857548

RESUMEN

High fructose intake is an important cause of metabolic disease. Due to the increasing prevalence of metabolic diseases worldwide, the development of an accurate and efficient tool for monitoring fructose in food is urgently needed to control the intake of fructose. Herein, a new fluorescent probe NBD-PQ-B with 7-nitrobenz-2-oxa-1, 3-diazole (NBD) as the fluorophore, piperazine (PQ) as the bridging group and phenylboronic acid (B) as the recognition receptor, was synthesized to detect fructose. The fluorescence of NBD-PQ-B increased linearly at 550 nm at an excitation wavelength of 497 nm with increasing fructose concentration from 0.1 to 20 mM. The limit of detection (LOD) of fructose was 40 µM. The pKa values of NBD-PQ-B and its fructose complexes were 4.1 and 10.0, respectively. In addition, NBD-PQ-B bound to fructose in a few seconds. The present technique was applied to determine the fructose content in beverages, honey, and watermelon with satisfactory results. Finally, the system could not only be applied in an aqueous solution with a spectrophotometer, but also be fabricated as a NBD-PQ-B/polyvinyl oxide (PEO) film by electrospinning for on-site food analysis simply with the assistance of a smartphone.


Asunto(s)
Colorantes Fluorescentes , Análisis de los Alimentos , Fructosa , Espectrometría de Fluorescencia , Fructosa/análisis , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Análisis de los Alimentos/métodos , Límite de Detección , Miel/análisis , Bebidas/análisis , 4-Cloro-7-nitrobenzofurazano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...