RESUMEN
Wound repair is a complex process that involves inflammation, proliferation, extracellular matrix deposition/remodeling and apoptosis. Autoimmune diseases profoundly affect the healing process. We have used histological parameters to characterize the recruitment of mast cells and the proliferative activity and apoptosis in the fibrovascular tissue induced by subcutaneous polyether-polyurethane sponge implants in lupus-prone New Zealand White (NZW) and in control Balb/c mouse strains at days 10 and 21 post implantation. Fibrovascular tissue infiltration (hematoxylin and eosin staining), mast cell number (Dominici staining) and cellular proliferation (AgNOR staining) peaked early (day 10) but collagen deposition (picrosirius red staining) and apoptosis remained high in implants of NZW mice during the experimental period. In contrast, implants of Balb/c animals showed a progressive increase in mast cell recruitment and cellular proliferation but apoptosis fell from day 10 to 21 post-implantation. This divergent response early mast cells recruitment, excessive collagen deposition and disturbed removal of apoptotic cells from the site of injury in NZW mice implies that the genotype trait of NZW mice is a determining factor in abnormal healing response.
Asunto(s)
Apoptosis/fisiología , Reacción a Cuerpo Extraño/patología , Implantes Experimentales/efectos adversos , Lupus Eritematoso Sistémico/patología , Paniculitis de Lupus Eritematoso/patología , Animales , Antígenos Nucleares/fisiología , Proliferación Celular , Colágeno/metabolismo , Modelos Animales de Enfermedad , Reacción a Cuerpo Extraño/inmunología , Reacción a Cuerpo Extraño/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Masculino , Mastocitos/patología , Ratones , Ratones Endogámicos BALB C , Paniculitis de Lupus Eritematoso/inmunología , Paniculitis de Lupus Eritematoso/metabolismo , Especificidad de la Especie , Cicatrización de Heridas/inmunologíaRESUMEN
The oocyte's meiotic spindle is a dynamic structure that relies on microtubule organization and regulation by centrosomes. Disorganization of centrosomal proteins, including the nuclear mitotic apparatus (NuMA) protein and the molecular motor complex dynein/dynactin, can lead to chromosomal instability and developmental abnormalities. The present study reports the distribution and function of these proteins in human oocytes, zygotes and early embryos. A total of 239 oocytes, 90 zygotes and discarded embryos were fixed and analyzed with confocal microscopy for NuMA and dynactin distribution together with microtubules and chromatin. Microtubule-associated dynein-dependent transport functions were explored by inhibiting phosphatase and ATPase activity with sodium-orthovanadate (SOV). At germinal vesicle (GV) stages, NuMA was dispersed across the nucleoplasm. After GV breaks down, NuMA became cytoplasmic before localizing at the spindle poles in metaphase I and II oocytes. Aberrant NuMA localization patterns were found during oocyte in vitro maturation. After fertilization, normal and abnormal pronuclear stage zygotes and embryos displayed translocation of NuMA to interphase nuclei. SOV treatment for up to 2 h induced lower maturation rates with chromosomal scattering and ectopic localization of NuMA. Accurate distribution of NuMA is important for oocyte maturation, zygote and embryo development in humans. Proper assembly of NuMA is likely necessary for bipolar spindle organization and human oocyte developmental competence.