RESUMEN
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Asunto(s)
Miedo , Receptores de Dopamina D2 , Animales , Miedo/efectos de los fármacos , Miedo/fisiología , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Ratas , Agonistas de Dopamina/farmacología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Roedores , Masculino , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiologíaRESUMEN
Fear extinction (FExt) is used to treat patients with posttraumatic stress disorder (PTSD). However, fear related to traumatic events can be persistent and return even after successful extinction. The neurochemical control of extinction seems to be performed by several neurotransmitters, including dopamine (DA), through D1 and D2 receptors. Recently, we showed that intranasally applied DA (IN-DA) facilitated the FExt, but the mechanisms by which it promoted this effect are still unknown. This study focused on investigating whether these effects are mediated by the action of DA on D2-like receptors since these receptors seem to be related to neurochemical and molecular changes underlying extinction. Also, we investigated whether IN-DA treatment would affect conditioned fear-induced antinociception (Fear-IA). Rats treated with IN-DA (1 mg/kg) twenty-five minutes after sulpiride (SUL; 40 mg/kg, i.p., D2-antagonist) were subjected to the extinction of contextual fear. IN-DA applied before the extinction session induced the FExt and prevented Fear-IA. These effects were impaired by pre-treatment with SUL, suggesting that the IN-DA effects are mediated by DA on D2-like receptors. SUL per se also facilitated the FExt but did not affect Fear-IA. These data suggest IN-DA as a promising pharmacological tool to supplement the psychotherapy of patients suffering from PTSD.
Asunto(s)
Condicionamiento Psicológico/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Dopamina/farmacología , Extinción Psicológica/fisiología , Miedo/fisiología , Receptores de Dopamina D2/fisiología , Sulpirida/farmacología , Administración Intranasal , Animales , Condicionamiento Psicológico/efectos de los fármacos , Dopaminérgicos/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Ratas , Sulpirida/antagonistas & inhibidoresRESUMEN
Social behavior is a hallmark of complex animal systems; however, some species appear to have secondarily lost this social ability. In these non-social species, whether social abilities are permanently lost or suppressed is unclear. The blind cavefish Astyanax mexicanus is known to be asocial. Here, we reveal that cavefish exhibited social-like interactions in familiar environments but suppressed these interactions in stress-associated unfamiliar environments. Furthermore, the level of suppression in sociality was positively correlated with that of stereotypic repetitive behavior, as seen in mammals. Treatment with a human antipsychotic drug targeting the dopaminergic system induced social-like interactions in cavefish, even in unfamiliar environments, while reducing repetitive behavior. Overall, these results suggest that the antagonistic association between repetitive and social-like behaviors is deeply shared from teleosts through mammals.
Asunto(s)
Conducta Animal , Characidae/fisiología , Conducta Social , Conducta Estereotipada , Animales , Antipsicóticos/farmacología , Aripiprazol/farmacología , Conducta Animal/efectos de los fármacos , Ceguera , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Ecosistema , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular , Reconocimiento en Psicología , Conducta Estereotipada/efectos de los fármacos , Natación , Factores de Tiempo , Grabación en VideoRESUMEN
Activation of midbrain dopamine neurons in response to positive prediction errors and reward predictive cues is proposed to "energize" reward seeking behaviors and approach responses to places where the reward is expected. In the present study, we tested the effect of the D2-dopamine receptor antagonist haloperidol on response latencies to enter two arms of a Y-maze with different reward probabilities. Adult male Wistar rats were trained to explore the Y-maze with sucrose pellets placed 30% of times at the end of one arm and 70% of times at the opposite arm. Therefore, the reward expectation was different among arms, and was updated in the trials when the reward was omitted. After training, rats received 0.05, 0.10, 0.15 mg/kg haloperidol, or saline 30 min before the test session. In the last, but not in the first trials, haloperidol caused a dose-dependent increase in arm choice latency and response latency. Saline, but not haloperidol, treated rats presented significantly longer response latencies for the 30% compared to the 70% reward probability arm. Haloperidol also caused a dose-dependent decrease in the number of entries in the 70% reward probability arm, increased the number of non-responses, and caused a dose-dependent increase in the number of re-entries in the 30% reward probability arm after non-rewarded trials. Control experiments suggested that haloperidol did not cause motor impairment or satiation, but rather impaired learning and motivation scores by reducing the reward expectation.
Asunto(s)
Haloperidol/efectos adversos , Aprendizaje/efectos de los fármacos , Motivación/efectos de los fármacos , Animales , Señales (Psicología) , Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Haloperidol/farmacología , Aprendizaje/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Estadísticos , Motivación/fisiología , Aprendizaje por Probabilidad , Ratas , Ratas Wistar , RecompensaRESUMEN
CB2 receptors (CB2 R) are expressed in midbrain neurons. To evidence the control of dopamine release in dorsal striatum by CB2 R, we performed experiments of [3 H]-dopamine release in dorsal striatal slices. We found a paradoxical increase in K+ -induced [3 H]-dopamine release by CB2 R activation with GW 833972A and JWH 133 two selective agonist. To understand the mechanism involved, we tested for a role of the D2 autoreceptor in this effect; because in pallidal structures, the inhibitory effect of CB1 receptors (CB1 R) on GABA release is switched to a stimulatory effect by D2 receptors (D2 R). We found that the blockade of D2 autoreceptors with sulpiride prevented the stimulatory effect of CB2 R activation; in fact, under this condition, CB2 R decreased dopamine release, indicating the role of the D2 autoreceptor in the paradoxical increase. We also found that the effect occurs in nigrostriatal terminals, since lesions with 6-OH dopamine in the middle forebrain bundle prevented CB2 R effects on release. In addition, D2 -CB2 R interaction promoted cAMP accumulation, and the increase in [3 H]-dopamine release was prevented by PKA blockade. D2 -CB2 R coprecipitation and proximity ligation assay studies indicated a close interaction of receptors that could participate in the observed effects. Finally, intrastriatal injection of CB2 R agonist induced contralateral turning in amphetamine-treated rats, which was prevented by sulpiride, indicating the role of the interaction in motor behavior. Thus, these data indicate that the D2 autoreceptor switches, from inhibitory to stimulatory, the CB2 R effects on dopamine release, involving the cAMP â PKA pathway in nigrostriatal terminals.
Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptores de Dopamina D2/metabolismo , Sustancia Negra/metabolismo , Anfetamina/farmacología , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , AMP Cíclico/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Movimiento , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB2/agonistas , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sulpirida/farmacologíaRESUMEN
Dopaminergic neurons have the ability to release Dopamine from their axons as well as from their soma and dendrites. This somatodendritically-released Dopamine induces an autoinhibition of Dopaminergic neurons mediated by D2 autoreceptors, and the stimulation of neighbor GABAergic neurons mediated by D1 receptors (D1r). Here, our results suggest that the somatodendritic release of Dopamine in the substantia nigra (SN) may stimulate GABAergic neurons that project their axons into the hippocampus. Using semiquantitative multiplex RT-PCR we show that chronic blockade of the Dopaminergic neurotransmission with both AMPT and reserpine specifically decreases the expression levels of D1r, remarkably this may be the result of an antagonistic effect between AMPT and reserpine, as they induced the expression of a different set of genes when treated by separate. Furthermore, using anterograde and retrograde tracing techniques, we found that the GABAergic neurons that express D1r also project their axons in to the CA1 region of the hippocampus. Finally, we also found that the same treatment that decreases the expression levels of D1r in SN, also induces an impairment in the performance in an appetitive learning task that requires the coding of reward as well as navigational skills. Overall, our findings show the presence of a GABAergic interconnection between the SNr and the hippocampus mediated by D1r.
Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Receptores de Dopamina D1/biosíntesis , Reserpina/farmacología , Sustancia Negra/metabolismo , alfa-Metiltirosina/farmacología , Inhibidores de Captación Adrenérgica/farmacología , Animales , Antagonistas de los Receptores de Dopamina D2/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Neuronas Dopaminérgicas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos BALB C , Fenotipo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/biosíntesis , Receptores de Dopamina D2/genética , Sustancia Negra/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiologíaRESUMEN
Orexins (OXs) system has been suggested to play a key role in regulate processes related to arousal, including anxious behaviors. However, until now, the contribution of OXs in anxiogenic-like effects has not been completely clear, particularly in rats, whose results are not yet conclusive in behavioral-tests such as elevated-plus-maze test (EPM-test). The goal of this study was to explore the anxiogenic-like effect induced by orexin-A (OX-A) using two different paradigms; the EPM-test and simultaneously a quantitative index in vivo, the cortical-electroencephalographic-(EEG)-record. This index proposes that a low-frequency domain EEG, particularly 0.5-5-Hz (delta and low portion of theta-waves), is a key indicator to evaluate anxiety levels. We also explored whether the anxious effect of OX-A could be altered by an antagonist of dopamine-D2-receptor (D2R) sulpiride (SUL). Our results showed that intracerebroventricular (i.c.v.) injection of a low dose of OX-A (140 pmol) did not increase anxiety levels in rats. On the other hand, cortical-EEG-activity showed only a decrease in delta-spectral-power but no changes in theta-potency. These data suggest that the reduction in delta-power induced by OX-A only keeps the animals awake and alert without changes in anxiety levels.
Asunto(s)
Electroencefalografía/efectos de los fármacos , Orexinas/farmacología , Animales , Ansiedad/inducido químicamente , Trastornos de Ansiedad/metabolismo , Nivel de Alerta/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ratas , Ratas Wistar , Receptores de Dopamina D2/efectos de los fármacos , Sulpirida/farmacologíaRESUMEN
Parkinson's disease (PD) consists of a neurodegenerative pathology that has received a considerable amount of attention because of its clinical manifestations. The most common treatment consists of administering the drugs levodopa and biperiden, which reduce the effectiveness of the disease and the progress of its symptoms. However, phytotherapy treatment of PD has shown great potential in retarding the loss of dopaminergic neurons and minimizing the behavioral abnormalities. The aim of this study is to systematically review the use of supplemental herbal plants with cellular protective effect and behavioral activity in in vivo and in vitro experimental models. A total of 20 studies were summarized, where the effectiveness of herbal extracts and their isolated bioactive compounds was observed in animal models for PD. The main neurochemical mechanisms found in these studies are schematically represented. The herbal extracts and their biocompounds have antioxidant, anti-apoptotic, and antiinflammatory properties, which contribute to avoiding neuronal loss. Reports show that besides acting on the biosynthesis of dopamine and its metabolites, these compounds prevent D2 receptors' hypersensitivity. It is suggested that further studies need be conducted to better understand the mechanisms of action of the bioactive compounds distributed in these plants. Copyright © 2017 John Wiley & Sons, Ltd.
Asunto(s)
Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/biosíntesis , Antagonistas de los Receptores de Dopamina D2/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , HumanosRESUMEN
Sleep disturbances are among the most disabling non-motor symptoms in Parkinson's disease. The pedunculopontine tegmental nucleus and basal ganglia are likely involved in these dysfunctions, as they are affected by neurodegeneration in Parkinson's disease and have a role in sleep regulation. To investigate this, we promoted a lesion in the pedunculopontine tegmental nucleus or substantia nigra pars compacta of male rats, followed by 24 h of REM sleep deprivation. Then, we administrated a dopaminergic D2 receptor agonist, antagonist or vehicle directly in the striatum. After a period of 24 h of sleep-wake recording, we observed that the ibotenic acid infusion in the pedunculopontine tegmental nucleus blocked the so-called sleep rebound effect mediated by REM sleep deprivation, which was reversed by striatal D2 receptors activation. Rotenone infusion in the substantia nigra pars compacta also blocked the sleep rebound, however, striatal D2 receptors activation did not reverse it. In addition, rotenone administration decreased the time spent in NREM sleep, which was corroborated by positive correlations between dopamine levels in both substantia nigra pars compacta and striatum and the time spent in NREM sleep. These findings suggest a new circuitry for sleep regulation in Parkinson's disease, involving the triad composed by pedunculopontine nucleus, substantia nigra pars compacta and striatum, evidencing a potential therapeutic target for the sleep disturbances associated to this pathology.
Asunto(s)
Cuerpo Estriado/metabolismo , Red Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Fases del Sueño/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/metabolismo , Red Nerviosa/efectos de los fármacos , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Ratas , Ratas Wistar , Fases del Sueño/efectos de los fármacosRESUMEN
RATIONALE: Electrical and chemical stimulation of the dorsal periaqueductal gray (dPAG), deep layers of the superior colliculus (dlSC), and inferior colliculus (IC) causes freezing and escape behavior in rodents. Systemic injections of the selective dopamine D2 receptor antagonist sulpiride increased the number of switch-off responses (SORs) to light and auditory evoked potentials in response to loud sounds. Dopamine D2 receptor inhibition in the IC was shown to enhance unconditioned fear. Nevertheless, the role of dopamine receptors in the dlSC and dPAG in the mediation of unconditioned fear has not yet been demonstrated. OBJECTIVES: The purpose of the present study was to characterize the effects of sulpiride injections (4 and 8 µg/0.2 µl) in the dlSC and dPAG in rats that were subjected to unconditioned fear paradigms. METHODS: Switch-off responses to light and exploratory behavior in the elevated plus maze were used to evaluate unconditioned fear in rats. RESULTS: Intra-dlSC microinjections of sulpiride increased the number of SORs to light. Intra-dlSC and intra-dPAG injections of sulpiride reduced the number of entries into and time spent on the open arms and decreased end-arm exploration and head dipping in the elevated plus maze. CONCLUSION: These findings suggest that dopamine, through D2 receptors in the dlSC and dPAG, is involved in defense reactions that are organized in the midbrain tectum.
Asunto(s)
Miedo/fisiología , Sustancia Gris Periacueductal/metabolismo , Receptores de Dopamina D2/metabolismo , Colículos Superiores/metabolismo , Animales , Catéteres de Permanencia , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Miedo/efectos de los fármacos , Masculino , Sustancia Gris Periacueductal/efectos de los fármacos , Estimulación Luminosa , Ratas Wistar , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Sulpirida/farmacología , Colículos Superiores/efectos de los fármacosRESUMEN
This study aimed to establish a hormonal induction protocol for spermiation of Brycon cephalus males, using Ala6, Pro9Net-mGnRH + metoclopramide (Ovopel®). Thus, 20 males were used divided into three inductor treatments [â pellet/kg (T1), â pellet/kg (T2) and 1â pellet/kg (T3)] and one control group (CO), which only received physiological solution applications (0.9% NaCl). All treatments were applied in a single dose. For evaluation of the availability of the treatment, the following seminal parameters were analyzed: seminal volume, subjective spermatic motility, duration of motility, pH, osmolality and spermatic concentration. T3 showed the highest seminal volume (4.66 ± 1.52 ml), and was significantly different in comparison with T1 (2.0 ± 0.9 ml), T2 (3.5 ± 1.3 ml) and CO (2.3 ± 1.2 ml). In relation to spermatic motility, T2 and T3 showed significantly higher levels [5, (81-100%)]. However, T3 showed significantly lower average sperm motility duration than T1, T2 and CO (30 ± 7 s; 28 ± 6 s; 32 ± 8 s, respectively). With regard to the seminal parameters of spermatic concentration, pH and osmolality, no significant variation was verified among treatments. In conclusion, mGnRH + metoclopramide used for hormonal induction of B. cephalus reproduction does not induce changes related to spermatic concentration, pH and osmolality parameters of the seminal fluid and the most adequate doses among tested treatments were â pellet/kg live fish.
Asunto(s)
Characiformes/fisiología , Hormona Liberadora de Gonadotropina/farmacología , Metoclopramida/farmacología , Semen/efectos de los fármacos , Animales , Antagonistas de los Receptores de Dopamina D2/farmacología , Hormona Liberadora de Gonadotropina/análogos & derivados , Concentración de Iones de Hidrógeno , Masculino , Concentración Osmolar , Semen/citología , Semen/metabolismo , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Factores de TiempoRESUMEN
Dopaminergic neurotransmission in the nucleus accumbens, a central component of the mesolimbic system, has been associated with acute pain modulation. As there is a transition from acute to chronic pain ('chronification'), modulatory structures may be involved in chronic pain development. Thus, this study aimed to elucidate the role of nucleus accumbens dopaminergic neurotransmission in chronification of pain. We used a rat model in which daily subcutaneous injection of prostaglandin E2 in the hindpaw for 14 days induces a long-lasting state of nociceptor sensitization that lasts for at least 30 days following the end of the treatment. Our findings demonstrated that the increase of dopamine in the nucleus accumbens by local administration of GBR12909 (0.5 nmol/0.25 µL), a dopamine reuptake inhibitor, blocked prostaglandin E2 -induced acute hyperalgesia. This blockade was prevented by a dopamine D2 receptor antagonist (raclopride, 10 nmol/0.25 µL) but not changed by a D1 receptor antagonist (SCH23390, 0.5, 3 or 10 nmol/0.25 µL), both co-administered with GBR12909 in the nucleus accumbens. In contrast, the induction of persistent hyperalgesia was facilitated by continuous infusion of GBR12909 in the nucleus accumbens (0.021 nmol/0.5 µL/h) over 7 days of prostaglandin E2 treatment. The development of persistent hyperalgesia was impaired by SCH23390 (0.125 nmol/0.5 µL/h) and raclopride (0.416 nmol/0.5 µL/h), both administered continuously in the nucleus accumbens over 7 days. Taken together, our data suggest that the chronification of pain involves the plasticity of dopaminergic neurotransmission in the nucleus accumbens, which switches its modulatory role from antinociceptive to pronociceptive.
Asunto(s)
Dolor Crónico/metabolismo , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Hiperalgesia/metabolismo , Núcleo Accumbens/metabolismo , Animales , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Antagonistas de Dopamina/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/administración & dosificación , Antagonistas de los Receptores de Dopamina D2/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Hiperalgesia/inducido químicamente , Masculino , Núcleo Accumbens/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/farmacología , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidoresRESUMEN
Dopamine and sleep have been independently linked with hippocampus-dependent learning. Since D2 dopaminergic transmission is required for the occurrence of rapid-eye-movement (REM) sleep, it is possible that dopamine affects learning by way of changes in post-acquisition REM sleep. To investigate this hypothesis, we first assessed whether D2 dopaminergic modulation in mice affects novel object preference, a hippocampus-dependent task. Animals trained in the dark period, when sleep is reduced, did not improve significantly in performance when tested 24h after training. In contrast, animals trained in the sleep-rich light period showed significant learning after 24h. When injected with the D2 inverse agonist haloperidol immediately after the exploration of novel objects, animals trained in the light period showed reduced novelty preference upon retesting 24h later. Next we investigated whether haloperidol affected the protein levels of plasticity factors shown to be up-regulated in an experience-dependent manner during REM sleep. Haloperidol decreased post-exploration hippocampal protein levels at 3h, 6h and 12h for phosphorylated Ca(2+)/calmodulin-dependent protein kinase II, at 6h for Zif-268; and at 12h for the brain-derived neurotrophic factor. Electrophysiological and kinematic recordings showed a significant decrease in the amount of REM sleep following haloperidol injection, while slow-wave sleep remained unaltered. Importantly, REM sleep decrease across animals was strongly correlated with deficits in novelty preference (Rho=0.56, p=0.012). Altogether, the results suggest that the dopaminergic regulation of REM sleep affects learning by modulating post-training levels of calcium-dependent plasticity factors.
Asunto(s)
Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Receptores de Dopamina D2/metabolismo , Sueño/fisiología , Animales , Fenómenos Biomecánicos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Adaptación a la Oscuridad/efectos de los fármacos , Adaptación a la Oscuridad/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Estimulación Eléctrica , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Haloperidol/farmacología , Hipocampo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Plasticidad Neuronal/efectos de los fármacos , Sueño/efectos de los fármacos , Factores de TiempoRESUMEN
Systemically administered antipsychotics bind to dopamine (DA) D2 receptors expressed in both pre- and postsynaptic neurons of different striatal sites and present an amnestic effect on learning and memory of conditioned avoidance responses (CAR). The aim of this study was to test whether blockade of the pre- or post-synaptic D2 receptors of the dorsolateral striatum of rats is the mechanism by which systemically administered antipsychotics present this amnestic effect. CAR learning and memory was evaluated in rats that received i.p. administrations of pre- or postsynaptic doses of the antipsychotic sulpiride combined with intra-DLS infusion of the D2 agonist quinpirole. Intra-DLS quinpirole itself was not amnestic and this effect was prevented by co-administration of presynaptic dose of sulpiride. However, sulpiride was amnestic when administered systemically in a post- but not presynaptic dose. This amnestic effect of sulpiride was prevented by the co-administration of quinpirole into the DLS. These results show that a blockade of postsynaptic D2 receptors in the DLS is necessary and sufficient to produce the amnestic effect of neuroleptics on CARs.
Asunto(s)
Antipsicóticos/farmacología , Cuerpo Estriado/efectos de los fármacos , Antagonistas de los Receptores de Dopamina D2/farmacología , Memoria/efectos de los fármacos , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Animales , Antipsicóticos/administración & dosificación , Reacción de Prevención/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Quimioterapia Combinada , Masculino , Neuronas/efectos de los fármacos , Quinpirol/administración & dosificación , Quinpirol/farmacología , Ratas , Ratas Wistar , Sulpirida/administración & dosificación , Sulpirida/farmacología , Membranas Sinápticas/efectos de los fármacosRESUMEN
BACKGROUND: A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system clearly reduces conditioned fear. Injections of haloperidol, a preferential D2 receptor antagonist, into the inferior colliculus (IC) enhance the processing of unconditioned aversive information. However, a clear characterization of the interplay of D2 receptors in the mediation of unconditioned and conditioned fear is still lacking. METHODS: The present study investigated the effects of intra-IC injections of the D2 receptor-selective antagonist sulpiride on behavior in the elevated plus maze (EPM), auditory-evoked potentials (AEPs) to loud sounds recorded from the IC, fear-potentiated startle (FPS), and conditioned freezing. RESULTS: Intra-IC injections of sulpiride caused clear proaversive effects in the EPM and enhanced AEPs induced by loud auditory stimuli. Intra-IC sulpiride administration did not affect FPS or conditioned freezing. CONCLUSIONS: Dopamine D2-like receptors of the inferior colliculus play a role in the modulation of unconditioned aversive information but not in the fear-potentiated startle response.