Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.331
Filtrar
1.
Sci Rep ; 14(1): 15181, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956295

RESUMEN

Human norovirus (HuNoV) is an enteric infectious pathogen belonging to the Caliciviridae family that causes occasional epidemics. Circulating alcohol-tolerant viral particles that are readily transmitted via food-borne routes significantly contribute to the global burden of HuNoV-induced gastroenteritis. Moreover, contact with enzymes secreted by other microorganisms in the environment can impact the infectivity of viruses. Hence, understanding the circulation dynamics of Caliciviridae is critical to mitigating epidemics. Accordingly, in this study, we screened whether environmentally abundant secretase components, particularly proteases, affect Caliciviridae infectivity. Results showed that combining Bacillaceae serine proteases with epsilon-poly-L-lysine (EPL) produced by Streptomyces-a natural antimicrobial-elicited anti-Caliciviridae properties, including against the epidemic HuNoV GII.4_Sydney_2012 strain. In vitro and in vivo biochemical and virological analyses revealed that EPL has two unique synergistic viral inactivation functions. First, it maintains an optimal pH to promote viral surface conformational changes to the protease-sensitive structure. Subsequently, it inhibits viral RNA genome release via partial protease digestion at the P2 and S domains in the VP1 capsid. This study provides new insights regarding the high-dimensional environmental interactions between bacteria and Caliciviridae, while promoting the development of protease-based anti-viral disinfectants.


Asunto(s)
Bacillaceae , Polilisina , Serina Proteasas , Streptomyces , Streptomyces/enzimología , Polilisina/farmacología , Polilisina/química , Polilisina/metabolismo , Serina Proteasas/metabolismo , Bacillaceae/enzimología , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Genoma Viral , Animales , Norovirus/efectos de los fármacos , Norovirus/genética , Inactivación de Virus/efectos de los fármacos , Caliciviridae/genética , Antivirales/farmacología
2.
BMC Vet Res ; 20(1): 288, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961481

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS: We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87 µM and 68.5 µM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6 µM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS: Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.


Asunto(s)
Antivirales , Luteolina , Virus de la Diarrea Epidémica Porcina , Luteolina/farmacología , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Células Vero , Porcinos , Simulación del Acoplamiento Molecular , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , Simulación por Computador , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/tratamiento farmacológico
3.
Sci Rep ; 14(1): 15381, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965294

RESUMEN

The antiviral properties of the flowering aerial extracts of Ruellia tuberosa and Ruellia patula were investigated through phytochemical profiling via LC-MS/MS and HPLC techniques. Qualitative LC-MS/MS analyses identified seventy-seven metabolites from both Ruellia species. R. tuberosa had the highest phenolic content (49.3%), whereas R. patula had the highest flavonoid content (57.8%). Additionally, quantitative HPLC investigations of the compounds identified by LC-MS/MS were performed using the available standard compounds. The main constituents in the R. tuberosa extract was found to be catechin (5321.63 µg/g), gallic acid (2878.71 µg/g), and ellagic acid (2530.79 µg/g), whereas the major compounds in the R. patula extract was found to be rutin (11,074.19 µg/g) and chlorogenic acid (3157.35 µg/g). Furthermore, the antiviral activities of both Ruellia species against HAdV-40, herpes simplex type 2 and H1N1 were evaluated. These findings demonstrated that R. tuberosa was more active than R. patula against all tested viruses, except for the HSV-2 virus, against which R. patula showed greater activity than R. tuberosa, with IC50 values of 20, 65, 22.59, and 13.13 µg/ml for R. tuberosa flowering aerial parts and 32.26, 11.66, and 23.03 µg/ml for R. patula flowering aerial parts, respectively for HAdV-40, herpes simplex type 2, and H1N1. Additionally, computational docking and molecular dynamics simulations were used to assess the molecular interactions between the bioactive compounds and specific viral targets. The combined findings from the in-vitro and in-silico experiments comprehensively evaluated the antiviral activities of both Ruellia species extracts.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales , Antivirales/farmacología , Antivirales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/química , Fitoquímicos/farmacología , Apiaceae/química , Espectrometría de Masas en Tándem , Simulación de Dinámica Molecular , Cromatografía Líquida de Alta Presión , Fenoles/química , Fenoles/farmacología , Flavonoides/química , Flavonoides/farmacología
4.
Sci Rep ; 14(1): 15363, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965389

RESUMEN

The therapeutic potential of insect-derived bioactive molecules as anti-SARS-CoV-2 agents has shown promising results. Hymenopteran venoms, notably from Apis mellifera (honeybee) and Vespa orientalis (oriental wasp), were examined for the first time in an in vitro setting for their potential anti-COVID-19 activity. This assessment utilized an immunodiagnostic system to detect the SARS-CoV-2 nucleocapsid antigen titer reduction. Further analyses, including cytotoxicity assays, plaque reduction assays, and in silico docking-based screening, were performed to evaluate the efficacy of the most potent venom. Results indicated that bee and wasp venoms contain bioactive molecules with potential therapeutic effects against SARS-CoV-2.Nevertheless, the wasp venom exhibited superior efficacy compared to bee venom, achieving a 90% maximal (EC90) concentration effect of antigen depletion at 0.184 mg/mL, in contrast to 2.23 mg/mL for bee venom. The cytotoxicity of the wasp venom was assessed on Vero E6 cells 48 h post-treatment using the MTT assay. The CC 50 of the cell growth was 0.16617 mg/mL for Vero E6 cells. The plaque reduction assay of wasp venom revealed 50% inhibition (IC50) at a 0.208 mg/mL concentration. The viral count at 50% inhibition was 2.5 × 104 PFU/mL compared to the initial viral count of 5 × 104 PFU/mL. In silico data for the wasp venom revealed a strong attraction to binding sites on the ACE2 protein, indicating ideal interactions. This substantiates the potential of wasp venom as a promising viral inhibitor against SARS-CoV-2, suggesting its consideration as a prospective natural preventive and curative antiviral drug. In conclusion, hymenopteran venoms, particularly wasp venom, hold promise as a source of potential therapeutic biomolecules against SARS-CoV-2. More research and clinical trials are needed to evaluate these results and investigate their potential for translation into innovative antiviral therapies.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Venenos de Avispas , Células Vero , SARS-CoV-2/efectos de los fármacos , Chlorocebus aethiops , Animales , Humanos , Antivirales/farmacología , COVID-19/virología , Venenos de Avispas/farmacología , Venenos de Avispas/química , Venenos de Abeja/farmacología , Venenos de Abeja/química , Egipto , Abejas , Avispas
5.
Virol J ; 21(1): 150, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965549

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is endemic worldwide, seriously affecting the development of the pig industry, but vaccines have limited protective effects against PRRSV transmission. The aim of this study was to identify potential anti-PRRSV drugs. We examined the cytotoxicity of seven compounds formulated based on the mass ratio of glycyrrhizic acid to matrine and calculated their inhibition rates against PRRSV in vitro. The results showed that the seven compounds all had direct killing and therapeutic effects on PRRSV, and the compounds inhibited PRRSV replication in a time- and dose-dependent manner. The compound with the strongest anti-PRRSV effect was selected for subsequent in vivo experiments. Pigs were divided into a control group and a medication group for the in vivo evaluation. The results showed that pigs treated with the 4:1 compound had 100% morbidity after PRRSV challenge, and the mortality rate reached 75% on the 8th day of the virus challenge. These results suggest that this compound has no practical anti-PRRSV effect in vivo and can actually accelerate the death of infected pigs. Next, we further analyzed the pigs that exhibited semiprotective effects following vaccination with the compound to determine whether the compound can synergize with the vaccine in vivo. The results indicated that pigs treated with the compound had higher mortality rates and more severe clinical reactions after PRRSV infection (p < 0.05). The levels of proinflammatory cytokines (IL-6, IL-8, IL-1ß, IFN-γ, and TNF-α) were significantly greater in the compound-treated pigs than in the positive control-treated pigs (p < 0.05), and there was no synergistic enhancement with the live attenuated PRRSV vaccine (p < 0.05). The compound enhanced the inflammatory response, prompted the body to produce excessive levels of inflammatory cytokines and caused body damage, preventing a therapeutic effect. In conclusion, the present study revealed that the in vitro effectiveness of these agents does not indicate that they are effective in vivo or useful for developing anti-PRRSV drugs. Our findings also showed that, to identify effective anti-PRRSV drugs, comprehensive drug screening is needed, for compounds with solid anti-inflammatory effects both in vitro and in vivo. Our study may aid in the development of new anti-PRRSV drugs.


Asunto(s)
Alcaloides , Antivirales , Ácido Glicirrínico , Matrinas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Quinolizinas , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/efectos de los fármacos , Alcaloides/farmacología , Quinolizinas/farmacología , Quinolizinas/uso terapéutico , Porcinos , Antivirales/farmacología , Antivirales/uso terapéutico , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Síndrome Respiratorio y de la Reproducción Porcina/tratamiento farmacológico , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Replicación Viral/efectos de los fármacos , Citocinas/metabolismo , Análisis de Supervivencia
6.
Virol J ; 21(1): 157, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992629

RESUMEN

Newborn piglets' health is seriously threatened by the porcine epidemic diarrhea virus (PEDV), which also has a significant effect on the pig industry. The gut microbiota produces butyrate, an abundant metabolite that modulates intestinal function through many methods to improve immunological and intestinal barrier function. The objective of this investigation was to ascertain how elevated butyrate concentrations impacted the host transcriptional profile of PEDV CV777 strain infection. Our findings showed that higher concentrations of butyrate have a stronger inhibitory effect on PEDV CV777 strain infection. According to RNA-seq data, higher concentrations of butyrate induced more significant transcriptional changes in IPEC-J2 cells, and signaling pathways such as PI3K-AKT may play a role in the inhibition of PEDV CV777 strain by high concentrations of butyrate. Ultimately, we offer a theoretical and experimental framework for future research and development of novel approaches to harness butyrate's antiviral infection properties.


Asunto(s)
Butiratos , Células Epiteliales , Virus de la Diarrea Epidémica Porcina , Animales , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Butiratos/farmacología , Butiratos/metabolismo , Células Epiteliales/virología , Células Epiteliales/efectos de los fármacos , Línea Celular , Enfermedades de los Porcinos/virología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Antivirales/farmacología , Transducción de Señal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Mucosa Intestinal/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Intestinos/virología
7.
J Med Virol ; 96(7): e29787, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988177

RESUMEN

Chronic hepatitis C virus infection (HCV) causes liver inflammation and fibrosis, leading to the development of severe liver disease, such as cirrhosis or hepatocellular carcinoma (HCC). Approval of direct-acting antiviral drug combinations has revolutionized chronic HCV therapy, with virus eradication in >98% of the treated patients. The efficacy of these treatments is such that it is formally possible for cured patients to carry formerly infected cells that display irreversible transcriptional alterations directly caused by chronic HCV Infection. Combining differential transcriptomes from two different persistent infection models, we observed a major reversion of infection-related transcripts after complete infection elimination. However, a small number of transcripts were abnormally expressed in formerly infected cells. Comparison of the results obtained in proliferating and growth-arrested cell culture models suggest that permanent transcriptional alterations may be established by several mechanisms. Interestingly, some of these alterations were also observed in the liver biopsies of virologically cured patients. Overall, our data suggest a direct and permanent impact of persistent HCV infection on the host cell transcriptome even after virus elimination, possibly contributing to the development of HCC.


Asunto(s)
Antivirales , Hepacivirus , Hepatitis C Crónica , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Hepacivirus/genética , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Transcriptoma , Infección Persistente/virología , Perfilación de la Expresión Génica , Hígado/virología , Hígado/patología , Carcinoma Hepatocelular/virología , Transcripción Genética/efectos de los fármacos
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000284

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , Bencilisoquinolinas , Macrófagos Alveolares , FN-kappa B , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Replicación Viral , Animales , Macrófagos Alveolares/virología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Replicación Viral/efectos de los fármacos , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Bencilisoquinolinas/farmacología , Antivirales/farmacología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/tratamiento farmacológico , Fiebre Porcina Africana/metabolismo
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000315

RESUMEN

Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.


Asunto(s)
Antivirales , Aprotinina , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Aprotinina/uso terapéutico , Aprotinina/farmacología , Aprotinina/química , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , Antivirales/administración & dosificación , Administración por Inhalación , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Animales , Reposicionamiento de Medicamentos/métodos , Inhibidores de Serina Proteinasa/uso terapéutico , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/administración & dosificación
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000477

RESUMEN

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Asunto(s)
Antivirales , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicación Viral , Proantocianidinas/farmacología , Proantocianidinas/química , Antivirales/farmacología , Antivirales/química , Humanos , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Coronavirus Humano OC43/efectos de los fármacos , Animales , Perros , Virus de la Influenza A/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Chlorocebus aethiops
12.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000469

RESUMEN

Coronavirus can cause various diseases, from mild symptoms to the recent severe COVID-19. The coronavirus RNA genome is frequently mutated due to its RNA nature, resulting in many pathogenic and drug-resistant variants. Therefore, many medicines should be prepared to respond to the various coronavirus variants. In this report, we demonstrated that Forsythia viridissima fruit ethanol extract (FVFE) effectively reduces coronavirus replication. We attempted to identify the active compounds and found that actigenin from FVFE effectively reduces human coronavirus replication. Arctigenin treatment can reduce coronavirus protein expression and coronavirus-induced cytotoxicity. These results collectively suggest that arctigenin is a potent natural compound that prevents coronavirus replication.


Asunto(s)
Forsythia , Frutas , Furanos , Lignanos , Extractos Vegetales , Replicación Viral , Forsythia/química , Lignanos/farmacología , Replicación Viral/efectos de los fármacos , Furanos/farmacología , Humanos , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antivirales/farmacología , Antivirales/química , Animales , Chlorocebus aethiops , Células Vero
13.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000520

RESUMEN

A vast and painful price has been paid in the battle against viruses in global health [...].


Asunto(s)
Antivirales , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas/métodos , Humanos , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos
14.
Methods Mol Biol ; 2837: 257-270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044091

RESUMEN

HBV is a small, enveloped DNA virus that replicates by reverse transcription of an RNA intermediate. Current anti-HBV treatment regiments employ interferon α or nucleos(t)ide analogs, but they are not curative, are of long duration, and can be accompanied by systemic side-effects. The HBV ribonuclease H (RNaseH) is essential for viral replication; however, it is unexploited as a drug target. RNaseH inhibitors that actively block viral replication would represent an important addition to the potential new drugs for treating HBV infection. Here, we describe two methods to measure the activity of RNaseH inhibitors. The DNA oligonucleotide-directed RNA cleavage assay allows mechanistic analysis of compounds for anti-HBV RNaseH activity. Analysis of preferential inhibition of plus-polarity DNA strand synthesis by HBV RNaseH inhibitors in a cell culture model of HBV replication can be used to measure the ability of RNaseH inhibitors to block viral replication.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Ribonucleasa H , Replicación Viral , Ribonucleasa H/metabolismo , Ribonucleasa H/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Técnicas de Cultivo de Célula/métodos , Pruebas de Enzimas/métodos
15.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2136-2149, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044580

RESUMEN

African swine fever virus (ASFV), as a contagious viral pathogen, is responsible for the occurrence of African swine fever (ASF), a rapidly spreading and highly lethal disease. Since ASFV was introduced into China in 2018, it has been quickly spread to many provinces, which brought great challenges to the pig industry in China. Due to the limited knowledge about the pathogenesis of ASFV, neither vaccines nor antiviral drugs are available. We have found that ASFV infection can induce oxidative stress responses in cells, and DNA repair enzymes play a key role in this process. This study employed RNA interference, RT-qPCR, Western blotting, Hemadsorption (HAD), and flow cytometry to investigate the effects of the inhibitors of DNA repair enzymes OGG1 and MTH1 on ASFV replication and evaluated the anti-ASFV effects of the inhibitors. This study provides reference for the development of anti-viral drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , ADN Glicosilasas , Monoéster Fosfórico Hidrolasas , Replicación Viral , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Animales , Replicación Viral/efectos de los fármacos , Porcinos , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Fiebre Porcina Africana/virología , Antivirales/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Vero
16.
An Acad Bras Cienc ; 96(3): e20230646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046020

RESUMEN

This work investigated the antioxidant and hepatoprotective activities of lemongrass extract and its effects on rat hepatotoxicity. The lemongrass extract (LGE) contains bioactive components such as phenolic acids, flavonoid components, vitamin C, fibers, and tannins. The LGE had high phenolic content (397 mg/100g) and flavonoids (164 mg/100g), influencing its antioxidant activity of 91.25%. Additionally, it inhibited 81% of breast cancer, also, inhibited the growth of pathogenic bacteria and Candida at a concentration of 20-40 µg/mL. Additionally, it inhibited SARS-Cov-2 by 75%; however, increasing the activity of Cas-3. Quercetin-3-rhamnoside was the main phenolic compound in the HPLC profile; the phenolic compounds may be attributable to the beneficial effects of LGE. In this study, the CCl4-challenged rats delivered two levels of LGE (100 and 300 mg/kg BW). LGE reduced ALT, AST, creatinine and urea by 50 and 37%, respectively. Generally, LGE mitigated the oxidative stress induced by CCl4, which is evident in the histology of liver and kidney tissues, where significant improvement, with no cytoplasmic degradation in undamaged liver hepatocytes, improved kidney performance and shape. It can be concluded that polyphenolic-rich LGE can mitigate the oxidative stress induced by CCl4 and other parameters while enhancing kidney and liver performance.


Asunto(s)
Antioxidantes , Antivirales , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Extractos Vegetales , Hojas de la Planta , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Ratas , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Antivirales/farmacología , Hojas de la Planta/química , Masculino , Ratas Wistar , Antiinfecciosos/farmacología , Hígado/efectos de los fármacos , Hígado/patología
17.
BMC Complement Med Ther ; 24(1): 274, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030504

RESUMEN

BACKGROUND: The high virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has triggered global health and economic concerns. The absence of specific antiviral treatments and the side effects of repurposed drugs present persistent challenges. This study explored a promising antiviral herbal extract against SARS-CoV-2 from selected Thai medicinal plants based on in vitro efficacy and evaluated its antiviral lead compounds by molecular docking. METHODS: Twenty-two different ethanolic-aqueous crude extracts (CEs) were rapidly screened for their potential activity against porcine epidemic diarrhea virus (PEDV) as a surrogate using a plaque reduction assay. Extracts achieving ≥ 70% anti-PEDV efficacy proceeded to the anti-SARS-CoV-2 activity test using a 50% tissue culture infectious dose method in Vero E6 cells. Molnupiravir and extract-free media served as positive and negative controls, respectively. Potent CEs underwent water/ethyl acetate fractionation to enhance antiviral efficacy, and the fractions were tested for anti-SARS-CoV-2 performance. The fraction with the highest antiviral potency was identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Molecular docking analyses of these compounds against the main protease (Mpro) of SARS-CoV-2 (6LU7) were performed to identify antiviral lead molecules. The top three hits were further evaluated for their conformational stability in the docked complex using molecular dynamics (MD) simulation. RESULTS: The water fraction of mulberry (Morus alba Linn.) leaf CE (WF-MLCE) exhibited the most potent anti-SARS-CoV-2 efficacy with low cytotoxicity profile (CC50 of ~ 0.7 mg/mL), achieving 99.92% in pre-entry mode and 99.88% in postinfection treatment mode at 0.25 mg/mL. Flavonoids and conjugates were the predominant compounds identified in WF-MLCE. Molecular docking scores of several flavonoids against SARS-CoV-2 Mpro demonstrated their superior antiviral potency compared to molnupiravir. Remarkably, myricetin-3-O-ß-D-galactopyranoside, maragrol B, and quercetin 3-O-robinobioside exhibited binding energies of ~ - 9 kcal/mol. The stability of each ligand-protein complex of these compounds with the Mpro system showed stability during MD simulation. These three molecules were pronounced as antiviral leads of WF-MLCE. Given the low cytotoxicity and high antiviral potency of WF-MLCE, it holds promise as a candidate for future therapeutic development for COVID-19 treatment, especially considering its economic and pharmacological advantages.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Extractos Vegetales , Plantas Medicinales , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Plantas Medicinales/química , Chlorocebus aethiops , Células Vero , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tailandia , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/farmacología , Fitoquímicos/química , Humanos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , COVID-19 , Pueblos del Sudeste Asiático
18.
Adv Pharmacol ; 100: 1-38, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034049

RESUMEN

A new drug can have its origin in either pharma, biotech or academia. In general, discovery scientists working in pharma and biotech are advantaged over their academic counterparts and the relative advantages and disadvantages associated are discussed in depth. Against all odds, an increasing number of important drugs have had their origins in academia. This article reports three case studies from the Liotta Research Group (LRG), which explores the special circumstances that allowed these drug development campaigns to be successful. The first involves the antiretroviral agent, emtricitabine. In this case efficient synthetic methodology, developed in the LRG, coupled with some key university and commercial sector partnerships, enabled a group of academic collaborators to discover and develop a highly effective HIV reverse transcriptase inhibitor. The second case study involves the discovery and development of the breakthrough hepatitis C drug, sofosbuvir. Based on key input from Professors Schinazi and Liotta at Emory University, scientists at the Emory startup, Pharmasset, identified the nucleoside core of the drug that would become sofosbuvir. Subsequent analysis of its phosphorylation profile by Pharmasset scientists suggested that converting it to its corresponding monophosphate prodrug would circumvent a kinase block and enable it to be an effective hepatitis C polymerase inhibitor. The third case study describes the formation of DRIVE (Drug Innovation Ventures at Emory)/EIDD (Emory Institute for Drug Development), which were created to circumvent unintended impediments for carrying out academic drug discovery and development. Although DRIVE/EIDD is a wholly-owned, not-for-profit subsidiary of Emory University, it contains many attributes that enables it to operate much more nimbly than a typical academic laboratory. With an experienced drug development team and no shareholders to distract them, DRIVE/EIDD was able to focus its attention of the development of drugs to address viral diseases of global concern. In particular, their strategy to identify and develop an antiviral agent active against multiple single-stranded RNA viruses led to molnupiravir, a broadly active, oral drug that received Emergency Use Authorization for the treatment of SARS-CoV-2 infections (i.e., COVID-19).


Asunto(s)
Descubrimiento de Drogas , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Desarrollo de Medicamentos/métodos , Emtricitabina/uso terapéutico , Sofosbuvir
19.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998974

RESUMEN

Considering the high evolutionary rate and great harmfulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is imperative to develop new pharmacological antagonists. Human angiotensin-converting enzyme-2 (ACE2) functions as a primary receptor for the spike protein (S protein) of SARS-CoV-2. Thus, a novel functional peptide, KYPAY (K5), with a boomerang structure, was developed to inhibit the interaction between ACE2 and the S protein by attaching to the ACE2 ligand-binding domain (LBD). The inhibition property of K5 was evaluated via molecular simulations, cell experiments, and adsorption kinetics analysis. The molecular simulations showed that K5 had a high affinity for ACE2 but a low affinity for the cell membrane. The umbrella sampling (US) simulations revealed a significant enhancement in the binding potential of this functional peptide to ACE2. The fluorescence microscopy and cytotoxicity experiments showed that K5 effectively prevented the interaction between ACE2 and the S protein without causing any noticeable harm to cells. Further flow cytometry research indicated that K5 successfully hindered the interaction between ACE2 and the S protein, resulting in 78% inhibition at a concentration of 100 µM. This work offers an innovative perspective on the development of functional peptides for the prevention and therapy of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Péptidos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Péptidos/química , Péptidos/farmacología , Simulación de Dinámica Molecular , COVID-19/virología , COVID-19/metabolismo , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Antivirales/farmacología , Cinética
20.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999188

RESUMEN

The leaves of Ilex paraguariensis (known as Yerba mate), used as a popular beverage, are a very well-recognized plant material with various biological activities, including analeptic (because of caffeine), anti-obesity (phenolics, saponins), antimicrobial, and antiviral (phenolics, saponins). Here, the chemical compositions of the leaves of two European Ilex species (× meserveae and aquifolium) with three varieties each were investigated. The terpenoid, saponin, and polyphenolic fractions were submitted for LC-MS or GC-MS analysis against a standard Mate leaf. In addition, the aroma profiles of all the species were analysed using HS-SPME-Arrow prior to GC-MS analysis. All fractions were subjected to antiviral and cytotoxic assays. We found 86 compounds in all accessions, with limonene, linalool, and p-cymene being predominant. There were minor similarities between the volatile compositions of the European and South American species. We found ursolic and oleanolic acid to be the main compounds in the terpenoid fraction. Mono-caffeoylquinic acids and di-caffeoylquinic acids were the main constituents of the polar fractions. About 180 compounds from the saponin group were tentatively identified, of which 9 and 3 were selected as distinctive markers for I. meserveae and I. aquifolium, respectively. Based on chemical screening, I. aquifolium Silver Queen was chosen as the source of terpenoid and saponin fractions and polyphenol extracts. The most substantial inhibition of cancer cell growth was observed with saponin in the case of the MCF7 (human breast cancer) cell line, while for LoVo and L929 cell lines (human colorectal cancer and reference mouse fibroblasts), it was slightly weaker. These results should be analysed further as a promising chemoprevention of colorectal and gastrointestinal cancers. Saponin and polyphenolic extracts exhibited similar activities against HSV-1 and HAdV-5, with 4-log reduction in virus titres. This study focuses our attention on a field of potential antiviral formulations derived from European holly.


Asunto(s)
Antivirales , Ilex , Extractos Vegetales , Hojas de la Planta , Saponinas , Ilex/química , Antivirales/farmacología , Antivirales/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Saponinas/farmacología , Saponinas/química , Saponinas/análisis , Animales , Polifenoles/farmacología , Polifenoles/análisis , Polifenoles/química , Terpenos/farmacología , Terpenos/análisis , Terpenos/química , Línea Celular Tumoral , Cromatografía de Gases y Espectrometría de Masas , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Ilex paraguariensis/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...