Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.680
Filtrar
1.
Sci Rep ; 14(1): 15484, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969663

RESUMEN

The symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis. We leveraged the facultatively symbiotic coral Astrangia poculata, which offers an opportunity to uncouple the ESR across its two symbiotic phenotypes (brown, white). Colonies of both symbiotic phenotypes were exposed to three temperature treatments for 15 days: (i) control (static 18 °C), (ii) heat challenge (increasing from 18 to 30 °C), and (iii) cold challenge (decreasing from 18 to 4 °C) after which host gene expression was profiled. Cold challenged corals elicited widespread differential expression, however, there were no differences between symbiotic phenotypes. In contrast, brown colonies exhibited greater gene expression plasticity under heat challenge, including enrichment of cell cycle pathways involved in controlling photobiont growth. While this plasticity was greater, the genes driving this plasticity were not associated with an amplified environmental stress response (ESR) and instead showed patterns of a dampened ESR under heat challenge. This provides nuance to the oxidative bleaching hypothesis and suggests that, at least during the early onset of bleaching, photobionts reduce the host's ESR under elevated temperatures in A. poculata.


Asunto(s)
Antozoos , Dinoflagelados , Simbiosis , Antozoos/fisiología , Animales , Dinoflagelados/fisiología , Estrés Fisiológico , Respuesta al Choque Térmico/fisiología , Calor , Especies Reactivas de Oxígeno/metabolismo , Fotosíntesis
2.
Artículo en Inglés | MEDLINE | ID: mdl-38963416

RESUMEN

A Gram-stain-negative, red pigment-producing, aerobic, and rod-shaped bacterial strain (A2-2T) was isolated from a bleached scleractinian coral (Porites lutea). Strain A2-2T grew with 1.0-7.0 % (w/v) NaCl (optimum, 3.0 %), at pH 6.0-11.0 (optimum, pH 8.0), and at 18-41 °C (optimum, 35 °C). Results of phylogenetic analysis based on 16S rRNA gene sequences suggested that strain A2-2T fell within the genus Spartinivicinus and was closely related to Spartinivicinus ruber S2-4-1HT (98.1 % sequence similarity) and Spartinivicinus marinus SM1973T (98.0 % sequence similarity). The predominant cellular fatty acids of strain A2-2T were C16 : 0 (31.0 %), summed feature 3 (29.0 %), summed feature 8 (11.7 %), C12 : 0 3-OH (6.4 %), and C10 : 0 3-OH (5.5 %), while the major respiratory quinone was Q-9. The polar lipids mainly comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid. The genome size of strain A2-2T was 6.8 Mb, with a G+C content of 40.2 mol%. The DNA-DNA hybridization value was 24.2 % between A2-2T and S. ruber S2-4-1HT and 36.9 % between A2-2T and S. marinus SM1973T, while the average nucleotide identity values were 80.1 and 88.8 %, respectively. Based on these findings, strain A2-2T could be recognized to represent a novel species of the genus Spartinivicinus, for which the name Spartinivicinus poritis sp. nov. is proposed. The type strain is A2-2T (=MCCC 1K08228T=KCTC 8323T).


Asunto(s)
Antozoos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , Pigmentos Biológicos , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Animales , Antozoos/microbiología , ADN Bacteriano/genética , Pigmentos Biológicos/metabolismo , Hibridación de Ácido Nucleico , Fosfolípidos
3.
Sci Am ; 330(2): 16, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-39017472
4.
Curr Biol ; 34(13): R613-R615, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981422

RESUMEN

Increasingly intense and frequent ocean heatwaves are causing widespread coral mortality. These heatwaves are just one of the many stressors - among for instance ocean acidification, nutrient pollution and destructive fishing practices - that have caused widespread decline of coral reefs over the past century. This destruction of reefs threatens the remarkable biodiversity of organisms that depend upon coral reefs. However, recent research suggests that many of the fishes and invertebrates that inhabit coral reefs may play an underappreciated role in influencing the resistance and recovery of corals to stressors, especially those caused by global climate change such as ocean heatwaves. Unraveling the threads that link these coral inhabitants to the corals' response to stressors has the potential to weave a more comprehensive model of resilience that integrates the plight of coral reefs with the breathtaking diversity of life they host. Here, we aim to elucidate the critical roles that coral-associated fishes and invertebrates play in mediating coral resilience to environmental stressors. By integrating recent research findings, we aim to showcase how these often-overlooked organisms influence coral resilience in the face of climate change.


Asunto(s)
Antozoos , Cambio Climático , Arrecifes de Coral , Peces , Invertebrados , Animales , Antozoos/fisiología , Invertebrados/fisiología , Peces/fisiología , Biodiversidad
5.
Glob Chang Biol ; 30(7): e17407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011806

RESUMEN

Climate change is the most significant threat to natural World Heritage (WH) sites, especially in the oceans. Warming has devastated marine faunas, including reef corals, kelp, and seagrass. Here, we project future declines in species and ecosystem functions across Australia's four WH coral reef regions. Model simulations estimating species-level abundances and probabilities of ecological persistence were combined with trait space reconstructions at "present," 2050 (+1.5°C of warming), and 2100 (+2°C) to explore biogeographical overlaps and identify key functional differences and forecast changes in function through time. Future climates varied by region, with Shark Bay projected to warm the most (>1.29°C), followed by Lord Howe, when standardized to marine park size. By 2050, ~40% of the Great Barrier Reef will exceed critical thresholds set by the warmest summer month (mean monthly maximum [MMM]), triggering mortality. Functional diversity was greatest at Ningaloo. At +1.5°C of warming, species and regions varied drastically in their functional responses, declined 20.2% in species richness (~70 extinctions) and lost functions across all reefs. At +2°C, models predicted a complete collapse of functions, consistent with IPCC forecasts. This variability suggests a bespoke management approach is needed for each region and is critical for understanding WH vulnerability to climate change, identifying thresholds, and quantifying uncertainty of impacts. This knowledge will aid in focusing management, policy and conservation actions to direct resources, rapid action, and set biodiversity targets for these reefs of global priority. As reefs reassemble into novel or different configurations, determining the winners and losers of functional space will be critical for meeting global landmark biodiversity goals.


Asunto(s)
Biodiversidad , Cambio Climático , Arrecifes de Coral , Australia , Animales , Antozoos/fisiología
6.
Environ Microbiol Rep ; 16(4): e13310, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982629

RESUMEN

Coral microbiomes differ in the mucus, soft tissue and skeleton of a coral colony, but whether variations exist in different tissues of a single polyp is unknown. In the stony coral, Fimbriaphyllia ancora, we identified 8,994 amplicon sequencing variants (ASVs) in functionally differentiated polyp tissues, i.e., tentacles, body wall, mouth and pharynx, mesenterial filaments, and gonads (testes and ovaries), with a large proportion of ASVs specific to individual tissues. However, shared ASVs comprised the majority of microbiomes from all tissues in terms of relative abundance. No tissue-specific ASVs were found, except in testes, for which there were only two samples. At the generic level, Endozoicomonas was significantly less abundant in the body wall, where calicoblastic cells reside. On the other hand, several bacterial taxa presented significantly higher abundances in the mouth. Interestingly, although without statistical confirmation, gonadal tissues showed lower ASV richness and relatively high abundances of Endozoicomonas (in ovaries) and Pseudomonas (in testes). These findings provide evidence for microbiome heterogeneity between tissues within coral polyps, suggesting a promising field for future studies of functional interactions between corals and their bacterial symbionts.


Asunto(s)
Antozoos , Bacterias , Microbiota , Antozoos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Filogenia , Simbiosis , ARN Ribosómico 16S/genética
7.
Microb Ecol ; 87(1): 92, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987492

RESUMEN

Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.


Asunto(s)
Antozoos , Biodiversidad , Arrecifes de Coral , Dinoflagelados , Simbiosis , Antozoos/microbiología , Animales , Dinoflagelados/genética , Dinoflagelados/clasificación , Dinoflagelados/fisiología , Papúa Nueva Guinea , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
8.
J Med Chem ; 67(14): 12248-12260, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38959374

RESUMEN

Cembranolides are characteristic metabolites in marine soft corals, with complex structures and widespread biological activities. However, seldom has an intensive pharmacological study been done for these intriguing marine natural products. In this work, systematic chemical investigation was performed on Sinularia pedunculata by HSQC-based small molecule accurate recognition technology (SMART), resulting in the isolation and identification of 31 cembrane-type diterpenoids, including six new ones. In the bioassay, several compounds showed significant anti-inflammatory activities on the inhibition of NO production. The structure-activity relationship (SAR) was comprehensively analyzed, and two most bioactive and less toxic compounds 8 and 9 could inhibit inflammation through suppressing NF-κB and MAPK signaling pathways, and reduce the secretion of inflammatory cytokines. In a mouse model of dextran sodium sulfate (DSS)-induced acute colitis, 8 and 9 exhibited good anti-inflammatory effects and the ability to repair the colon epithelium, giving insight into the application of cembranolides as potential ulcerative colitis (UC) agents.


Asunto(s)
Antozoos , Colitis Ulcerosa , Sulfato de Dextran , Diterpenos , Animales , Colitis Ulcerosa/tratamiento farmacológico , Diterpenos/farmacología , Diterpenos/química , Diterpenos/uso terapéutico , Diterpenos/aislamiento & purificación , Ratones , Relación Estructura-Actividad , Antozoos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antiinflamatorios/aislamiento & purificación , Células RAW 264.7 , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Descubrimiento de Drogas , Ratones Endogámicos C57BL , Humanos , Masculino , Óxido Nítrico/metabolismo
9.
Commun Biol ; 7(1): 878, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025984

RESUMEN

The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.


Asunto(s)
Antozoos , Membrana Celular , Dinoflagelados , Lipidómica , Simbiosis , Animales , Antozoos/metabolismo , Antozoos/fisiología , Antozoos/microbiología , Membrana Celular/metabolismo , Dinoflagelados/metabolismo , Dinoflagelados/fisiología , Lípidos de la Membrana/metabolismo
10.
Sci Adv ; 10(29): eadn2218, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028812

RESUMEN

The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.


Asunto(s)
Antozoos , Duplicación de Gen , Genoma , Simbiosis , Termotolerancia , Simbiosis/genética , Antozoos/genética , Antozoos/fisiología , Antozoos/microbiología , Animales , Termotolerancia/genética , Arrecifes de Coral , Filogenia
11.
Artículo en Inglés | MEDLINE | ID: mdl-39037435

RESUMEN

Coral reefs are declining due to the rising seawater temperature. Bacteria within and surrounding corals play key roles in maintaining the homeostasis of the coral holobiont. Research on coral-related bacteria could provide benefits for coral reef restoration. During the isolation of coral-associated bacteria, a Gram-stain-negative, motile bacterium (D5M38T) was isolated from seawater surrounding corals in Daya Bay, Shenzhen, PR China. Phylogenetic analysis revealed that strain D5M38T represents a novel species in the genus Cognatishimia. The temperature range for strain D5M38T growth was 10-40 °C, and the optimum temperature was 37 °C. The salinity range for the growth of this isolate was from 0 to 4.0 %, with an optimal salinity level of 0.5 %. The pH range necessary for strain D5M38T growth was between pH 5.0 and 9.0, with an optimal pH being 7.5. The predominant fatty acid was summed feature 8 (65.0 %). The major respiratory quinone was Q-10. The DNA G+C content was 56.8 %. The genome size was 3.88 Mb. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strain D5M38T and its two closest neighbours, Cognatishimia activa LMG 29900T and Cognatishimia maritima KCTC 23347T, were 73.2/73.6%, 73.2/73.6% and 19.7/19.5%, respectively. Strain D5M38T was clearly distinct from its closest neighbours C. activa LMG 29900T and C. maritima KCTC 23347T, with 16S rRNA gene sequence similarity values of 97.5 and 97.3 %, respectively. The phylogenetic analysis, along with the ANI, AAI, and dDDH values, demonstrated that strain D5M38T is a member of the genus Cognatishimia, and is distinct from the other two recognized species within this genus. The physiological, biochemical and chemotaxonomic characteristics also supported the species novelty of strain D5M38T. Thus, strain D5M38T is considered to be classified as representing a novel species in the genus Cognatishimia, for which the name Cognatishimia coralii sp. nov. is proposed. The type strain is D5M38T (=MCCC 1K08692T=KCTC 8160T).


Asunto(s)
Antozoos , Técnicas de Tipificación Bacteriana , Composición de Base , Arrecifes de Coral , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Agua de Mar , Análisis de Secuencia de ADN , Antozoos/microbiología , Agua de Mar/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Animales , China , Ubiquinona/análogos & derivados , Hibridación de Ácido Nucleico
12.
Microb Biotechnol ; 17(7): e14524, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980956

RESUMEN

The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.


Asunto(s)
Antozoos , ADN Helicasas , Halomonas , Halomonas/genética , Halomonas/enzimología , Animales , Antozoos/microbiología , Antozoos/virología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimología , Bacteriófagos/fisiología , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo
13.
Commun Biol ; 7(1): 882, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030351

RESUMEN

Coral exhibits diel rhythms in behavior and gene transcription. However, the influence of elevated temperature, a key factor causing coral bleaching, on these rhythms remains poorly understood. To address this, we examined physiological, metabolic, and gene transcription oscillations in the Acropora tenuis-Cladocopium sp. holobiont under constant darkness (DD), light-dark cycle (LD), and LD with elevated temperature (HLD). Under LD, the values of photosystem II efficiency, reactive oxygen species leakage, and lipid peroxidation exhibited significant diel oscillations. These oscillations were further amplified during coral bleaching under HLD. Gene transcription analysis identified 24-hour rhythms for specific genes in both coral and Symbiodiniaceae under LD. Notably, these rhythms were disrupted in coral and shifted in Symbiodiniaceae under HLD. Importantly, we identified over 20 clock or clock-controlled genes in this holobiont. Specifically, we suggested CIPC (CLOCK-interacting pacemaker-like) gene as a core clock gene in coral. We observed that the transcription of two abundant rhythmic genes encoding glycoside hydrolases (CBM21) and heme-binding protein (SOUL) were dysregulated by elevated temperature. These findings indicate that elevated temperatures disrupt diel gene transcription rhythms in the coral-Symbiodiniaceae holobiont, affecting essential symbiosis processes, such as carbohydrate utilization and redox homeostasis. These disruptions may contribute to the thermal bleaching of coral.


Asunto(s)
Antozoos , Simbiosis , Antozoos/genética , Antozoos/fisiología , Animales , Ritmo Circadiano/genética , Transcripción Genética , Calor , Dinoflagelados/genética , Dinoflagelados/fisiología , Temperatura
14.
Sci Total Environ ; 946: 174429, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38960185

RESUMEN

Understanding species distribution and the related driving processes is a fundamental issue in ecology. However, incomplete data on reef-building corals in the ecoregions of the South China Sea have hindered a comprehensive understanding of coral distribution patterns and their ecological drivers in the Northwest Pacific (NWP). This study investigated the coral species diversity and distribution patterns in the NWP by collecting species presence/absence data from the South China Sea and compiling an extensive species distribution database for the region, and explored their major environmental drivers. Our NWP coral database included 612 recorded coral species across 15 ecoregions. Of these, 536 coral species were recorded in the South China Sea Oceanic Islands after compilation, confirming the extraordinary coral species diversity in this ecoregion. Coral alpha diversity was found to decrease with increasing latitude in the whole NWP, while the influence of the Kuroshio Current on environmental conditions in its path results in a slower decline in species richness with latitude compared to regions within the South China Sea. Beta-diversity decomposition revealed that nestedness patterns mainly occurred between low and high latitude ecoregions, while communities within similar latitudes exhibited a turnover component, particularly pronounced at high latitudes. The impact of environmental factors on coral assemblage structure outweighed the effects of spatial distance. Temperature, especially winter temperature, and light intensity strongly influenced alpha diversity and beta diversity's nestedness component. Additionally, turbidity and winter temperature variations at high latitudes contributed to the turnover pattern observed among communities in the NWP. These findings elucidate the assembly processes and major environmental drivers shaping different coral communities in the NWP, highlighting the significant role of specific environmental filtering in coral distribution patterns and providing valuable insights for coral species conservation efforts.


Asunto(s)
Antozoos , Biodiversidad , Arrecifes de Coral , Animales , Antozoos/fisiología , Océano Pacífico , Monitoreo del Ambiente , China , Distribución Animal
15.
Proc Biol Sci ; 291(2027): 20231988, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045694

RESUMEN

Understanding the dispersal potential of different species is essential for predicting recovery trajectories following local disturbances and the potential for adaptive loci to spread to populations facing extreme environmental changes. However, dispersal distances have been notoriously difficult to estimate for scleractinian corals, where sexually (as gametes or larvae) or asexually (as fragments or larvae) derived propagules disperse through vast oceans. Here, we demonstrate that generational dispersal distances for sexually produced propagules can be indirectly inferred for corals using individual-based isolation-by-distance (IbD) analyses by combining reduced-representation genomic sequencing with photogrammetric spatial mapping. Colonies from the genus Agaricia were densely sampled across plots at four locations and three depths in Curaçao. Seven cryptic taxa were found among the three nominal species (Agaricia agaricites, Agaricia humilis and Agaricia lamarcki), with four taxa showing generational dispersal distances within metres (two taxa within A. agaricites and two within A. humilis). However, no signals of IbD were found in A. lamarcki taxa and thus these taxa probably disperse relatively longer distances. The short distances estimated here imply that A. agaricites and A. humilis populations are reliant on highly localized replenishment and demonstrate the need to estimate dispersal distances quantitatively for more coral species.


Asunto(s)
Distribución Animal , Antozoos , Arrecifes de Coral , Animales , Antozoos/fisiología
16.
Curr Biol ; 34(12): R576-R578, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889680

RESUMEN

Aquatic apicomplexans called Corallicolida have been found in tropical and coral-reef settings, infecting many coral species. New data challenge this tropical distribution and expand the corallicolids' range well into the cold temperate. Surprisingly, the sister clade to corallicolids infects only one group of vertebrates - bony fishes.


Asunto(s)
Antozoos , Arrecifes de Coral , Peces , Simbiosis , Animales , Antozoos/fisiología , Peces/fisiología , Filogenia
17.
Curr Biol ; 34(12): R578-R580, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889681

RESUMEN

Sea urchins are critically important herbivores on coral reefs. A new study shows that a disease that decimated sea urchins in the Caribbean in 2022 has spread to the Red Sea, further threatening coral ecosystems.


Asunto(s)
Arrecifes de Coral , Erizos de Mar , Animales , Erizos de Mar/fisiología , Ecosistema , Región del Caribe , Antozoos/fisiología
18.
Sci Total Environ ; 943: 173694, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852868

RESUMEN

The escalation of global change has resulted in heightened frequencies and intensities of environmental fluctuations within coral reef ecosystems. Corals originating from marginal reefs have potentially enhanced their adaptive capabilities in response to these environmental variations through processes of local adaptation. However, the intricate mechanisms driving this phenomenon remain a subject of limited investigation. This study aimed to investigate how corals in Luhuitou reef, a representative relatively high-latitude reef in China, adapt to seasonal fluctuations in seawater temperature and light availability. We conducted a 190-day plantation experiment with the widespread species, Galaxea fascicularis, in Luhuitou local, and from Meiji reef, a typical offshore tropical reef, to Luhuitou as comparison. Drawing upon insights from physiological adaptations, we focused on fatty acid (FA) profiles to unravel the trophic strategies of G. fascicularis to cope with environmental fluctuations from two origins. Our main findings are threefold: 1) Native corals exhibited a stronger physiological resilience compared to those transplanted from Meiji. 2) Corals from both origins consumed large quantities of energy reserves in winter, during which FA profiles of local corals altered, while the change of FA profiles of corals from Meiji was probably due to the excessive consumption of saturated fatty acid (SFA). 3) The better resilience of native corals is related to high levels of functional polyunsaturated fatty acid (PUFA), while insufficient nutrient reserves, possibly due to weak heterotrophic ability, result in the obstruction of the synthesis pathway of PUFA for corals from Meiji, leading to their intolerance to environmental changes. Consequently, we suggest that the tolerance of G. fascicularis to environmental fluctuations is determined by their local adapted trophic strategies. Furthermore, our findings underscore the notion that the rapid adaptation of relatively high-latitude corals to seasonal environmental fluctuations might not be readily attainable for their tropical counterparts within a brief timeframe.


Asunto(s)
Adaptación Fisiológica , Antozoos , Arrecifes de Coral , Antozoos/fisiología , Animales , China , Ácidos Grasos , Estaciones del Año , Agua de Mar/química , Temperatura , Monitoreo del Ambiente
19.
Mar Drugs ; 22(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921581

RESUMEN

A marine-derived fungal strain, Aspergillus sp. ITBBc1, was isolated from coral collected from the South China Sea in Hainan province. Intensive chemical investigation of the fermentation extract of this strain afforded four new secondary metabolites (1-4), named megastigmanones A-C and prenylterphenyllin H, along with four known compounds (5-8). Their structures were elucidated by extensive spectroscopic analysis including one-and two-dimensional (1D and 2D) NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The modified Mosher's method was undertaken to determine the absolute configurations of new compounds. The phytotoxic activity test showed that compounds 6-8 exhibited significant antagonistic activity against the germination of Triticum aestivum L. and Oryza sativa L. seeds with a dose-dependent relationship.


Asunto(s)
Antozoos , Aspergillus , Triticum , Aspergillus/metabolismo , Aspergillus/química , Antozoos/microbiología , Animales , Triticum/microbiología , Oryza/microbiología , Metabolismo Secundario , Espectroscopía de Resonancia Magnética , Semillas , China , Germinación/efectos de los fármacos , Estructura Molecular
20.
PLoS One ; 19(6): e0292474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923956

RESUMEN

The effects of turbidity and sedimentation stress on early life stages of corals are poorly understood, particularly in Atlantic species. Dredging operations, beach nourishment, and other coastal construction activities can increase sedimentation and turbidity in nearby coral reef habitats and have the potential to negatively affect coral larval development and metamorphosis, reducing sexual reproduction success. In this study, we investigated the performance of larvae of the threatened Caribbean coral species Orbicella faveolata exposed to suspended sediments collected from a reef site in southeast Florida recently impacted by dredging (Port of Miami), and compared it to the performance of larvae exposed to sediments collected from the offshore, natal reef of the parent colonies. In a laboratory experiment, we tested whether low and high doses of each of these sediment types affected the survival, settlement, and respiration of coral larvae compared to a no-sediment control treatment. In addition, we analyzed the sediments used in the experiments with 16S rRNA gene amplicon sequencing to assess differences in the microbial communities present in the Port versus Reef sediments, and their potential impact on coral performance. Overall, only O. faveolata larvae exposed to the high-dose Port sediment treatment had significantly lower survival rates compared to the control treatment, suggesting an initial tolerance to elevated suspended sediments. However, significantly lower settlement rates were observed in both Port treatments (low- and high-dose) compared to the control treatment one week after exposure, suggesting strong latent effects. Sediments collected near the Port also contained different microbial communities than Reef sediments, and higher relative abundances of the bacteria Desulfobacterales, which has been associated with coral disease. We hypothesize that differences in microbial communities between the two sediments may be a contributing factor in explaining the observed differences in larval performance. Together, these results suggest that the settlement success and survival of O. faveolata larvae are more readily compromised by encountering port inlet sediments compared to reef sediments, with potentially important consequences for the recruitment success of this species in affected areas.


Asunto(s)
Antozoos , Arrecifes de Coral , Sedimentos Geológicos , Larva , Animales , Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Antozoos/fisiología , Larva/crecimiento & desarrollo , Sedimentos Geológicos/microbiología , Especies en Peligro de Extinción , ARN Ribosómico 16S/genética , Florida , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...