Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.532
Filtrar
1.
Mikrochim Acta ; 191(9): 507, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098931

RESUMEN

An electrochemical sensor based on an electroactive nanocomposite was designed for the first time consisting of electrochemically reduced graphene oxide (ERGO), polyaniline (PANI), and poly(alizarin red S) (PARS) for ciprofloxacin (CIPF) detection. The ERGO/PANI/PARS-modified screen-printed carbon electrode (SPCE) was constructed through a three-step electrochemical protocol and characterized using FTIR, UV-visible spectroscopy, FESEM, CV, LSV, and EIS. The new electrochemical CIPF sensor demonstrated a low detection limit of 0.0021 µM, a broad linear range of 0.01 to 69.8 µM, a high sensitivity of 5.09 µA/µM/cm2, and reasonable selectivity and reproducibility. Moreover, the ERGO/PANI/PARS/SPCE was successfully utilized to determine CIPF in milk with good recoveries and relative standard deviation (< 5%), which were close to those with HPLC analysis.


Asunto(s)
Compuestos de Anilina , Antraquinonas , Carbono , Ciprofloxacina , Técnicas Electroquímicas , Electrodos , Grafito , Límite de Detección , Leche , Grafito/química , Leche/química , Compuestos de Anilina/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Animales , Ciprofloxacina/análisis , Carbono/química , Antraquinonas/química , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Antibacterianos/análisis
2.
Int J Biol Macromol ; 276(Pt 2): 133902, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029835

RESUMEN

Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated ß-glucan aggregates (OSßG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSßG-Agg was due to hydrogen-bonding among ß-glucan moieties of OSßG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSßG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSßG-Agg due to the strength of these interactions, but they interacted in OSßG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSßG-Agg. Overall, OSßG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.


Asunto(s)
Antraquinonas , Hesperidina , beta-Glucanos , Hesperidina/química , beta-Glucanos/química , Antraquinonas/química , Solubilidad , Interacciones Hidrofóbicas e Hidrofílicas , Disponibilidad Biológica , Enlace de Hidrógeno
3.
Chemosphere ; 363: 142866, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019176

RESUMEN

The bioreduction of toxic chromium(VI) to sparingly soluble chromium(III) represents an environmentally friendly and cost-effective method for remediating Cr contamination. Usually, this bioreduction process is slow and requires the addition of quinone compounds as electron shuttles to enhance the reaction rate. However, the dissolved quinone compounds are susceptible to loss with water flow, thereby limiting their effectiveness. To address this challenge, this study loaded anthraquinone-2,6-disulfonate (AQDS), a typical quinone compound, onto biochar (BC) to create a novel solid-phase electron mediator (BC-AQDS) that can sustainably promote Cr(VI) bioreduction. The experimental results demonstrated that BC-AQDS significantly promoted the bioreduction of Cr(VI), where the reaction rate constant increased by 4.81 times, and the reduction extent increased by 38.31%. X-ray photoelectron spectroscopy and Fourier-Transform Infrared Spectroscopy analysis revealed that AQDS replaced the -OH functional groups on the BC surface to form BC-AQDS. Upon receiving electrons from Shewanella putrefaciens CN32, BC-AQDS was reduced to BC-AH2DS, which subsequently facilitated the reduction of Cr(VI) to Cr(III). This redox cycle between BC-AQDS and BC-AH2DS effectively enhanced the bioreduction rate of Cr(VI). Our study also found that a lower carbonization temperature of BC resulted in a higher surface -OH functional group content, enabling a greater load of AQDS and a more pronounced enhancement effect on the bioreduction of Cr(VI). Additionally, a smaller particle size of BC and a higher dosage of BC-AQDS further contributed to the enhancement of Cr(VI) bioreduction. The preparation of BC-AQDS in this study effectively improve the utilization of quinone compounds and offer a promising approach for enhancing the bioreduction of Cr(VI). It provides a more comprehensive reference for understanding and solving the problem of Cr pollution in groundwater.


Asunto(s)
Antraquinonas , Biodegradación Ambiental , Carbón Orgánico , Cromo , Oxidación-Reducción , Shewanella putrefaciens , Cromo/metabolismo , Cromo/química , Carbón Orgánico/química , Antraquinonas/metabolismo , Antraquinonas/química , Shewanella putrefaciens/metabolismo , Contaminantes Químicos del Agua/metabolismo
4.
Molecules ; 29(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064904

RESUMEN

Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.


Asunto(s)
Alcaloides , Antraquinonas , Matrinas , Simulación de Dinámica Molecular , Nanopartículas , Quinolizinas , Cicatrización de Heridas , Alcaloides/química , Alcaloides/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quinolizinas/química , Quinolizinas/farmacología , Nanopartículas/química , Antraquinonas/química , Antraquinonas/farmacología , Animales , Portadores de Fármacos/química , Ratones , Hidrogeles/química , Humanos
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000176

RESUMEN

Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to have high stress tolerance, possessing diverse defense mechanisms, including the presence of the bright-orange pigment parietin. While several studies have demonstrated the photoprotective and antioxidant properties of this anthraquinone, the role of parietin in the tolerance of lichens to desiccation is not clear yet. Thalli, which are exposed to solar radiation and become bright orange, may require enhanced desiccation tolerance. Here, we showed differences in the anatomy of naturally pale and bright-orange thalli of X. parietina and visualized parietin crystals on the surface of the upper cortex. Parietin was extracted from bright-orange thalli by acetone rinsing and quantified using HPLC. Although acetone rinsing did not affect PSII activity, thalli without parietin had higher levels of lipid peroxidation and a lower membrane stability index in response to desiccation. Furthermore, highly pigmented thalli possess thicker cell walls and, according to thermogravimetric analysis, higher water-holding capacities than pale thalli. Thus, parietin may play a role in desiccation tolerance by stabilizing mycobiont membranes, providing an antioxidative defense, and changing the morphology of the upper cortex of X. parietina.


Asunto(s)
Desecación , Líquenes , Líquenes/metabolismo , Emodina/análogos & derivados , Emodina/metabolismo , Antraquinonas/metabolismo , Antraquinonas/química
6.
J Agric Food Chem ; 72(29): 16163-16176, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980703

RESUMEN

Aloe-emodin, a natural hydroxyanthraquinone, exerts both adverse and protective effects. This study aimed at investigating these potential effects of aloe-emodin in humans upon the use of food supplements and herbal medicines using a physiologically based kinetic (PBK) modeling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE) approach. For this, PBK models in rats and humans were established for aloe-emodin including its active metabolite rhein and used to convert in vitro data on hepatotoxicity, nephrotoxicity, reactive oxidative species (ROS) generation, and Nrf2 induction to corresponding in vivo dose-response curves, from which points of departure (PODs) were derived by BMD analysis. The derived PODs were subsequently compared to the estimated daily intakes (EDIs) resulting from the use of food supplements or herbal medicines. It is concluded that the dose levels of aloe-emodin from food supplements or herbal medicines are unlikely to induce toxicity, ROS generation, or Nrf2 activation in liver and kidney.


Asunto(s)
Antraquinonas , Riñón , Hígado , Animales , Humanos , Ratas , Riñón/metabolismo , Riñón/efectos de los fármacos , Antraquinonas/química , Antraquinonas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Cinética , Masculino , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Suplementos Dietéticos/análisis , Aloe/química , Aloe/metabolismo , Ratas Sprague-Dawley , Femenino
7.
Acta Chim Slov ; 71(2): 197-203, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38919108

RESUMEN

Association behavior between quinizarin (1,4-dihydroxyanthraquinone), an analogue of the chromophore of anthracycline anticancer drugs and sodium dodecyl sulfate (SDS) micelles in the presence of glucose, NaCl and urea additives was studied using absorption spectroscopy and conductometric techniques. The spectral results indicate an increase of binding constant and partition coefficient values in the presence of glucose and NaCl whereas the addition of urea leads to a decrease of binding strength and quinizarin partitioning into SDS micelles. Thus, the rise of NaCl and glucose concentrations is favorable for the quinizarin distribution into SDS micelles. From electrical conductivity measurements it was found that the critical micelle concentration (CMC) of SDS/quinizarin system decreases by adding NaCl and glucose whereas urea has not influence on the micelization process at the concentrations used in the present study. Since biologically compounds like glucose, NaCl and urea are found in the human body, the attained outcomes can be important in finding of effective drug delivery systems.


Asunto(s)
Antraquinonas , Glucosa , Micelas , Cloruro de Sodio , Dodecil Sulfato de Sodio , Urea , Antraquinonas/química , Cloruro de Sodio/química , Glucosa/química , Dodecil Sulfato de Sodio/química , Urea/química
8.
J Hazard Mater ; 475: 134906, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889455

RESUMEN

The alternating current (AC)-driven bioelectrochemical process, in-situ coupling cathodic reduction and anodic oxidation in a single electrode, offers a promising way for the mineralization of refractory aromatic pollutants (RAPs). Frequency modulation is vital for aligning reduction and oxidation phases in AC-driven bioelectrodes, potentially enhancing their capability to mineralize RAPs. Herein, a frequency-modulated AC-driven bioelectrode was developed to enhance RAP mineralization, exemplified by the degradation of Alizarin Yellow R (AYR). Optimal performance was achieved at a frequency of 1.67 mHz, resulting in the highest efficiency for AYR decolorization and subsequent mineralization of intermediates. Performance declined at both higher (3.33 and 8.30 mHz) and lower (0.83 mHz) frequencies. The bioelectrode exhibited superior electron utilization, bidirectional electron transfer, and redox bifunctionality, effectively aligning reduction and oxidation processes to enhance AYR mineralization. The 1.67 mHz frequency facilitated the assembly of a collaborative microbiome dedicated to AYR bio-mineralization, characterized by an increased abundance of functional consortia proficient in azo dye reduction (e.g., Stenotrophomonas and Shinella), aromatic intermediates oxidation (e.g., Sphingopyxis and Sphingomonas), and electron transfer (e.g., Geobacter and Pseudomonas). This study reveals the role of frequency modulation in AC-driven bioelectrodes for enhanced RAP mineralization, offering a novel and sustainable approach for treating RAP-bearing wastewater.


Asunto(s)
Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Compuestos Azo/química , Colorantes/química , Técnicas Electroquímicas , Antraquinonas/química
9.
Food Res Int ; 189: 114547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876606

RESUMEN

Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.


Asunto(s)
Caseínas , Ácidos Cumáricos , Simulación del Acoplamiento Molecular , Polifenoles , Solubilidad , Caseínas/química , Concentración de Iones de Hidrógeno , Polifenoles/química , Ácidos Cumáricos/química , Resveratrol/química , Antraquinonas/química , Nanopartículas/química , Composición de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química
10.
J Chromatogr A ; 1730: 465094, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889584

RESUMEN

In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in rhubarb was wholly explored using 34 standards by UHPLC-QTOF-MS/MS in negative ion mode. In consequently, the diagnostic product ions for speedy screening and categorization of chemical components in rhubarb were ascertained based on their MS/MS splitting decomposition patterns and intensity analysis. According to these findings, a fresh two-step data mining strategy had set up. The initial key step involves the use of characteristic product ions and neutral loss to screen for different types of substituents and basic skeletons of compounds. The subsequent key step is to screen and classify different types of compounds based on their characteristic product ions. This method can be utilized for rapid research, classification, and identification of compounds in rhubarb. A total of 356 compounds were rapidly identified or tentatively characterized in three rhubarb species extracts, including 150 acylglucoside, 125 anthraquinone, 65 flavanols and 15 other compounds. This study manifests that the analytical strategy is feasible for the analysis of complex natural products in rhubarb.


Asunto(s)
Antraquinonas , Rheum , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Rheum/química , Espectrometría de Masas en Tándem/métodos , Antraquinonas/química , Antraquinonas/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Glucósidos/análisis , Glucósidos/química
11.
Int J Pharm ; 661: 124397, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945463

RESUMEN

Rhein, a natural anthraquinone compound derived from traditional Chinese medicine, exhibits potent anti-inflammatory properties via modulating the level of Reactive oxygen or nitrogen species (RONS). Nevertheless, its limited solubility in water, brief duration of plasma presence, as well as its significant systemic toxicity, pose obstacles to its in vivo usage, necessitating the creation of a reliable drug delivery platform to circumvent these difficulties. In this study, an esterase-responsive and mitochondria-targeted nano-prodrug was synthesized by conjugating Rhein with the polyethylene glycol (PEG)-modified triphenyl phosphonium (TPP) molecule, forming TPP-PEG-RH, which could spontaneously self-assemble into RPT NPs when dispersed in aqueous media. The TPP outer layer of these nanoparticles enhances their pharmacokinetic profile, facilitates efficient delivery to mitochondria, and promotes cellular uptake, thereby enabling enhanced accumulation in mitochondria and improved therapeutic effects in vitro. The decline in RONS was observed in IL-1ß-stimulated chondrocyte after RPT NPs treating. RPT NPs also exert excellent anti-inflammatory (IL-1ß, TNF-α, IL-6 and MMP-13) and antioxidative effects (Cat and Sod) via the Nrf2 signalling pathway, upregulation of cartilage related genes (Col2a1 and Acan). Moreover, RPT NPs shows protection of mitochondrial membrane potential and inhibition of chondrocyte apoptosis. Moreover, These findings suggest that the mitochondria-targeted polymer-Rhein conjugate may offer a therapeutic solution for patients suffering from chronic joint disorders, by attenuating the progression of osteoarthritis (OA).


Asunto(s)
Antraquinonas , Antiinflamatorios , Mitocondrias , Nanopartículas , Osteoartritis , Profármacos , Antraquinonas/administración & dosificación , Antraquinonas/farmacología , Antraquinonas/farmacocinética , Antraquinonas/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteoartritis/tratamiento farmacológico , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Profármacos/administración & dosificación , Profármacos/química , Nanopartículas/química , Condrocitos/efectos de los fármacos , Polietilenglicoles/química , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Antioxidantes/química , Sistemas de Liberación de Medicamentos/métodos , Especies Reactivas de Oxígeno/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Compuestos Organofosforados/química , Compuestos Organofosforados/administración & dosificación , Ratas
12.
Drug Des Devel Ther ; 18: 2367-2379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911033

RESUMEN

Background: Anthraquinone drugs are widely used in the treatment of tumors. However, multidrug resistance and severe cardiac toxicity limit its use, which have led to the discovery of new analogues. In this paper, 4-Deoxy-ε-pyrromycinone (4-Deo), belonging to anthraquinone compounds, was first been studied with the anti-tumor effects and the safety in vitro and in vivo as a new anti-tumor drug or lead compound. Methods: The quantitative analysis of 4-Deo was established by UV methodology. The anti-cancer effect of 4-Deo in vitro was evaluated by cytotoxicity experiments of H22, HepG2 and Caco2, and the anti-cancer mechanism was explored by cell apoptosis and cycle. The tumor-bearing mouse model was established by subcutaneous inoculation of H22 cells to evaluate the anti-tumor effect of 4-Deo in vivo. The safety of 4-Deo was verified by the in vitro safety experiments of healthy cells and the in vivo safety experiments of H22 tumor-bearing mice. Tumor tissue sections were labeled with CRT, HMGB1, IL-6 and CD115 to explore the preliminary anti-cancer mechanism by immunohistochemistry. Results: In vitro experiments demonstrated that 4-Deo could inhibit the growth of H22 by inducing cell necrosis and blocking cells in S phase, and 4-Deo has less damage to healthy cells. In vivo experiments showed that 4-Deo increased the positive area of CRT and HMGB1, which may inhibit tumor growth by triggering immunogenic cell death (ICD). In addition, 4-Deo reduced the positive area of CSF1R, and the anti-tumor effect may be achieved by blocking the transformation of tumor-associated macrophages (TAMs) to M2 phenotype. Conclusion: In summary, this paper demonstrated the promise of 4-Deo for cancer treatment in vitro and in vivo. This paper lays the foundation for the study of 4-Deo, which is beneficial for the further development anti-tumor drugs based on the lead compound of 4-Deo.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Ratones Endogámicos BALB C
13.
Mar Drugs ; 22(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38921570

RESUMEN

A new dimeric C-glycoside polyketide chrysomycin F (1), along with four new monomeric compounds, chrysomycins G (2), H (3), I (4), J (5), as well as three known analogues, chrysomycins A (6), B (7), and C (8), were isolated and characterised from a strain of Streptomyces sp. obtained from a sediment sample collected from the South China Sea. Their structures were determined by detailed spectroscopic analysis. Chrysomycin F contains two diastereomers, whose structures were further elucidated by a biomimetic [2 + 2] photodimerisation of chrysomycin A. Chrysomycins B and C showed potent anti-tuberculosis activity against both wild-type Mycobacterium tuberculosis and a number of clinically isolated MDR M. tuberculosis strains.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Policétidos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/aislamiento & purificación , Policétidos/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , China , Estructura Molecular , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/aislamiento & purificación
14.
J Agric Food Chem ; 72(20): 11706-11715, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728528

RESUMEN

In this study, we devised a photothermally stable phytochemical dye by leveraging alizarin in conjunction with the metal-organic framework ZIF-8 (AL@ZIF-8). The approach involved grafting alizarin into the microporous structure of ZIF-8 through physical adsorption and hydrogen-bonding interactions. AL@ZIF-8 significantly enhanced the photostability and thermostability of alizarin. The nanoparticles demonstrate substantial color changes in various pH environments, showcasing their potential for meat freshness monitoring. Furthermore, we introduced an intelligent film utilizing poly(vinyl alcohol)-sodium alginate-AL@ZIF-8 (PA-SA-ZA) for detecting beef freshness. The sensor exhibited a superior water contact angle (52.34°) compared to the alizarin indicator. The color stability of the film was significantly enhanced under visible and UV light (ΔE < 5). During beef storage, the film displayed significant color fluctuations correlating with TVB-N (R2=0.9067), providing precise early warning signals for assessing beef freshness.


Asunto(s)
Alginatos , Colorimetría , Alcohol Polivinílico , Alginatos/química , Animales , Alcohol Polivinílico/química , Bovinos , Colorimetría/métodos , Antraquinonas/química , Embalaje de Alimentos/instrumentación , Fitoquímicos/química , Carne Roja/análisis , Estructuras Metalorgánicas/química
15.
J Pharm Biomed Anal ; 245: 116191, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38728950

RESUMEN

A method involving chitosan-assisted magnetic-stirring-enhanced mechanical amorphous dispersion extraction was developed and utilized to extract hydrophobic anthraquinones from Rhei Radix et Rhizoma prior to ultrahigh performance liquid chromatography analysis. Incorporating natural chitosan as a dispersant facilitated the extraction of hydrophobic anthraquinones using purified water, considerably enhancing the eco-friendliness of the extraction methodology. To optimize extraction efficiency, an extensive evaluation of the crucial parameters influencing rhubarb yield was conducted. Furthermore, a response surface methodology was applied to optimize the extraction conditions. Under these optimized conditions, the method exhibited linearity ranges of 0.1-100 µg/mL, with correlation coefficients between 0.9990 and 0.9998. The method's intraday (n = 6) and interday (n = 6) precision levels were maintained at ≤3.58%, which was considered to be within acceptable limits. The computed detection and quantification limits were 16.54-24.60 and 54.91-82.04 ng/mL, respectively. Consequently, this optimized method was effectively employed to extract five specific compounds (aloe-emodin, emodin, rhein, chrysophanol, and physcion) from Rhei Radix et Rhizoma, achieving recoveries ranging from 86.43% to 102.75%.


Asunto(s)
Antraquinonas , Interacciones Hidrofóbicas e Hidrofílicas , Plantas Medicinales , Rheum , Antraquinonas/química , Antraquinonas/análisis , Cromatografía Líquida de Alta Presión/métodos , Rheum/química , Plantas Medicinales/química , Quitosano/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/aislamiento & purificación , Agua/química , Emodina/análogos & derivados , Emodina/química , Emodina/análisis , Límite de Detección , Extractos Vegetales/química
16.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2393-2401, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38812140

RESUMEN

Rhei Radix et Rhizoma is common traditional Chinese medicine with multiple original plants. The content and proportion of the active components in Rhei Radix et Rhizoma from different plant species were compared to accurately evaluate the medicine qua-lity and provide a theoretical basis for precise use of this medicine in clinical practice. In this study, fresh Rhei Radix et Rhizoma samples were collected from the four-year-old plants of Rheum palmatum, R. tanguticum, and R. officinale. The relative content of 220 anthraquinones, anthrones, and tannins in the samples were determined by pseudo-targeted metabolomics, and the differential components were screened by multivariate statistical methods. The principal component analysis classified the samples into three clusters according to the original plants. The orthogonal partial least squares-discriminant analysis(OPLS-DA) screened out 117 differential components, including 8 free anthraquinones, 18 anthraquinone glycosides, 80 anthrones, and 11 tannins. Twenty-eight components had the highest content in R. tanguticum, mainly including sennosides, anthraquinone glycosides, and procyanidins. Thirty-five components showed the highest content in R. officinale, mainly including free anthraquinones and catechines. Fifty-four components showed the highest content in R. palmatum, mainly including dianthrones, while the structures of most of them cannot be determined temporarily. The content distribution of differential components in the three original plants indicates that R. tanguticum has the strongest effect of purging, while R. officinale has the strongest effect of clearing heat and purging fire, and both have stronger effects of resolvong stasis and dredging meridians than R. palmatum.


Asunto(s)
Medicamentos Herbarios Chinos , Metabolómica , Rheum , Rizoma , Rheum/química , Rizoma/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Antraquinonas/química , Antraquinonas/análisis , Cromatografía Líquida de Alta Presión
17.
Pest Manag Sci ; 80(9): 4617-4627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747671

RESUMEN

BACKGROUND: The discovery of antimicrobial ingredients from natural products could be an effective way to create novel fungicides. Rubia cordifolia L., a traditional Chinese herb, may have antimicrobial effects on plant pathogens according to our previous screening study. RESULTS: Rubia cordifolia L. extracts had moderate inhibitory effects on apple Valsa canker (Valsa mali) and tomato grey mould (Botrytis cinerea) at a concentration of 10 mg mL-1. With the use of bioguided isolation methods, eight compounds (1-8) were obtained, including the new compound 2,2,6-trimethyl-6-(4-methylphenyl)-tetrahydropyrano- 3-ol (7), and seven quinone derivatives. Two compounds, mollugin (1) and 1,3,6-trihydroxy-2-methylanthraquinone (6), were found to exhibit outstanding antifungal activities against V. mali and Phytophthora capsici Leon. The half maximal effective concentration (EC50) of compound 1 and compound 6 against V. mali were 79.08 and 81.78 µg mL-1, respectively, and the EC50 of compound 6 against P. capsici was 4.86 µg mL-1. Compound 1 also showed excellent activity against tobacco mosaic virus (TMV). The inactive, inductive, protective and curative activities against TMV were 84.29%, 83.38%, 86.81%, and 60.02%, respectively, at a concentration of 500 µg mL-1, which were all close to or greater than that of the positive control (100 µg mL-1 chitosan oligosaccharide, COS). CONCLUSION: Mollugin and 1,3,6-trihydroxy-2-methylanthraquinone are potentially valuable active compounds that lay a foundation for research on botanical fungicide products derived from R. cordifolia L. and provide lead structures for quinone derivative synthesis and structural modification. © 2024 Society of Chemical Industry.


Asunto(s)
Antraquinonas , Fungicidas Industriales , Rubia , Antraquinonas/farmacología , Antraquinonas/química , Rubia/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/microbiología , Botrytis/efectos de los fármacos , Phytophthora/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química
18.
Chem Biodivers ; 21(8): e202400753, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818648

RESUMEN

VEGFR-2 is a prominent therapeutic target in antitumor drug research to block tumor angiogenesis. This study focused on the synthesis and optimization of PROTACs based on the natural product rhein, resulting in the successful synthesis of 15 distinct molecules. In A549 cells, D9 exhibited remarkable antitumor efficacy with an IC50 of 5.88±0.50 µM, which was 15-fold higher compared to rhein (IC50=88.45±2.77 µM). An in-depth study of the effect of D9 on the degradation of VEGFR-2 revealed that D9 was able to induce the degradation of VEGFR-2 in A549 cells in a time-dependent manner. The observed effect was reversible, contingent upon the proteasome and ubiquitination system, and demonstrably linked to CRBN. Further experiments revealed that D9 induced apoptosis in A549 cells and led to cell cycle arrest in the G1 phase. Molecular docking simulations validated the binding mode of D9 to VEGFR, establishing the potential of D9 to bind to VEGFR-2 in its natural state. In summary, this study confirms the feasibility of natural product-bound PROTAC technology for the development of a new generation of VEGFR-2 degraders, offering a novel trajectory for the future development of pharmacological agents targeting VEGFR-2.


Asunto(s)
Antineoplásicos , Apoptosis , Productos Biológicos , Simulación del Acoplamiento Molecular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/síntesis química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/síntesis química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Estructura Molecular , Células A549 , Proteolisis/efectos de los fármacos , Quimera Dirigida a la Proteólisis
19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2210-2221, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812236

RESUMEN

In this study, J774A.1 macrophages stimulated by lipopolysaccharide(LPS) and adenosine triphosphate(ATP) were used to establish an in vitro model of pyroptosis, and the intervention mechanism of free total rhubarb anthraquinones(FTRAs) on pyroptosis was investigated. J774A.1 macrophages were cultured in vitro, and the experiment was assigned to the control group and groups with different concentrations of LPS(0.25, 0.5, and 1 µg·mL~(-1)) and ATP(1.25, 2.5, and 5 mmol·L~(-1)). An in vitro model of macrophage pyroptosis was established by detecting cell viability through CCK-8, propidium iodide(PI) apoptotic cell staining, lactate dehydrogenase(LDH), interleukin(IL)-18, and tumor necrosis factor(TNF)-α release. Then, J774A.1 macrophages were randomly divided into six groups: blank control group, LPS+ATP group, high-dose FTRA group, and low, medium, and high-dose FTRA pre-protection group. The phenotypic characteristics and key indicators of pyroptosis were detected as the basis for evaluating the effect of FTRAs on pyroptosis induced by LPS and ATP. Western blot and RT-PCR were used to detect the expression levels of protein and mRNA related to the pyroptosis pathway in caspase-1/11 and elucidate the molecular mechanism of the anti-pyroptosis effect. The results showed that the stimulation condition of 0.50 µg·mL~(-1) LPS+5.00 mmol·L~(-1) ATP was the most effective in the in vitro model of macrophage pyroptosis. FTRAs pre-protected cells for 24 h and then can increase cell viability under pyroptosis conditions, alleviate cell damage, lower the positive rate of PI staining, and reduce the release of LDH, IL-18, and TNF-α. FTRAs were able to significantly inhibit the activation of GSDMD proteins and significantly down-regulate the protein expression of the pyroptosis pathway signature molecules, TLR4, NLRP3, cleaved-caspase-1, and cleaved-caspase-11, but they had no significant effect on ASC proteins. FTRAs were also able to significantly inhibit the mRNA expression of caspase-1, caspase-11, and GSDMD. These results indicate that FTRAs have an inhibitory effect on the pyroptosis model induced by LPS and ATP and play an anti-pyroptosis effect by regulating classical and non-classical pyroptosis signaling pathways and reducing the production of inflammatory cytokines.


Asunto(s)
Antraquinonas , Macrófagos , Piroptosis , Rheum , Piroptosis/efectos de los fármacos , Rheum/química , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/citología , Antraquinonas/farmacología , Antraquinonas/química , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Adenosina Trifosfato/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Supervivencia Celular/efectos de los fármacos , Interleucina-18/genética , Interleucina-18/metabolismo
20.
J Med Life ; 17(1): 87-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38737655

RESUMEN

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Asunto(s)
Amidas , Antraquinonas , Inhibidores Enzimáticos , Lactoilglutatión Liasa , Humanos , Amidas/química , Amidas/farmacología , Antraquinonas/farmacología , Antraquinonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...