Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779116

RESUMEN

Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.


Asunto(s)
Apolipoproteína C-I/química , Apolipoproteína C-I/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/metabolismo , Secuencias de Aminoácidos , Apolipoproteína C-I/genética , Apolipoproteínas E/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Unión Proteica , Seudogenes , Receptores de Lipoproteína/metabolismo
2.
J Lipid Res ; 60(2): 400-411, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559175

RESUMEN

Human apolipoprotein C1 (APOC1) is a 57 amino acid long polypeptide that, through its potent inhibition of cholesteryl ester transferase protein, helps regulate the transfer of lipids between lipid particles. We have now determined the structure of APOC1 in four crystal forms by X-ray diffraction. A molecule of APOC1 is a single, slightly bent, α-helix having 13-14 turns and a length of about 80 Å. APOC1 exists as a dimer, but the dimers are not the same in the four crystals. In two monoclinic crystals, two helices closely engage one another in an antiparallel fashion. The interactions between monomers are almost entirely hydrophobic with sparse electrostatic complements. In the third monoclinic crystal, the two monomers spread at one end of the dimer, like a scissor opening, and, by translation along the crystallographic a axis, form a continuous, contiguous sheet through the crystal. In the orthorhombic crystals, two molecules of APOC1 are related by a noncrystallographic 2-fold axis to create an arc of about 120 Å length. This symmetrical dimer utilizes interactions not present in dimers of the monoclinic crystals. Versatility of APOC1 monomer association shown by these crystals is suggestive of physiological function.


Asunto(s)
Apolipoproteína C-I/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Electricidad Estática
3.
Med Sci Monit ; 22: 1152-60, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052600

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the most common cancers and is among the main causes of death in females around the world. Although several serum biomarkers have been identified for breast cancer, due to lack of adequate sensitivity and specificity they do not adequately distinguish BC from confounding conditions. New approaches are urgently needed to improve BC detection and treatment. MATERIAL/METHODS: Eighty serum samples from 20 healthy individuals and 60 patients with BC (22 triple-negative breast cancer, TNBC; 38 non-triple-negative breast cancer, NTNBC) were included. Protein profiling of serum samples was analyzed using surface-enhanced laser desorption/ionization time-of-flight mass spectroscopy (SELDI-TOF-MS). Candidate biomarkers were purified by SDS-PAGE electrophoresis and identified by MALDI-TOF/TOF. RESULTS: The candidate biomarker positioned at 6447.9 m/z was significantly decreased in BC patients. Moreover, the expression intensity of the candidate biomarker was weaker in the TNBC and pre-surgery group compared with the NTNBC and post-surgery group. We ultimately identified the biomarker as apolipoprotein C-I (ApoC-I). Furthermore, we found that ApoC-I peptides inhibited proliferation of human breast cancer cells in vitro and suppressed tumor growth in vivo. CONCLUSIONS: These results suggest that ApoC-I peptides may be a potential diagnostic biomarker and therapeutic approach for BC.


Asunto(s)
Apolipoproteína C-I/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Péptidos/metabolismo , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Apolipoproteína C-I/química , Apoptosis/efectos de los fármacos , Proteínas Sanguíneas/metabolismo , Neoplasias de la Mama/cirugía , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Ratones Desnudos , Persona de Mediana Edad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto Joven
4.
Sci China Life Sci ; 56(11): 975-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24203452

RESUMEN

Apolipoprotein C1 (Apoc1) is associated with lipoprotein metabolism, but its physiological role during embryogenesis is largely unknown. We reveal a new function of Apoc1b, a transcript isoform of Apoc1, in epiboly during zebrafish gastrulation. Apoc1b is expressed in yolk syncytial layers and in deep cells of the ventral and lateral region of the embryos. It displays a radial gradient with high levels in the interior layer and low levels in the superficial layer. Knockdown of Apoc1b by injecting antisense morpholino (MO) caused the epiboly arrest in deep cells. Moreover, we show that the radial intercalation and the radial gradient distribution of E-cadherin are disrupted both in Apoc1b knockdown and overexpressed embryos. Therefore, Apoc1b controls epiboly via E-cadherin-mediated radial intercalation in a gradient-dependent manner.


Asunto(s)
Apolipoproteína C-I/metabolismo , Gastrulación/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Apolipoproteína C-I/química , Apolipoproteína C-I/genética , Secuencia de Bases , Cadherinas/metabolismo , Movimiento Celular/genética , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Isoformas de Proteínas , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
J Biol Chem ; 288(47): 33997-34008, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24121499

RESUMEN

Apolipoproteins (apo) C-I and C-III are known to inhibit lipoprotein lipase (LPL) activity, but the molecular mechanisms for this remain obscure. We present evidence that either apoC-I or apoC-III, when bound to triglyceride-rich lipoproteins, prevent binding of LPL to the lipid/water interface. This results in decreased lipolytic activity of the enzyme. Site-directed mutagenesis revealed that hydrophobic amino acid residues centrally located in the apoC-III molecule are critical for attachment to lipid emulsion particles and consequently inhibition of LPL activity. Triglyceride-rich lipoproteins stabilize LPL and protect the enzyme from inactivating factors such as angiopoietin-like protein 4 (angptl4). The addition of either apoC-I or apoC-III to triglyceride-rich particles severely diminished their protective effect on LPL and rendered the enzyme more susceptible to inactivation by angptl4. These observations were seen using chylomicrons as well as the synthetic lipid emulsion Intralipid. In the presence of the LPL activator protein apoC-II, more of apoC-I or apoC-III was needed for displacement of LPL from the lipid/water interface. In conclusion, we show that apoC-I and apoC-III inhibit lipolysis by displacing LPL from lipid emulsion particles. We also propose a role for these apolipoproteins in the irreversible inactivation of LPL by factors such as angptl4.


Asunto(s)
Apolipoproteína C-III/química , Apolipoproteína C-I/química , Lipoproteína Lipasa/química , Triglicéridos/química , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/química , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Apolipoproteína C-I/genética , Apolipoproteína C-I/metabolismo , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Bovinos , Emulsiones , Humanos , Lipólisis/fisiología , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Mutagénesis Sitio-Dirigida , Triglicéridos/genética , Triglicéridos/metabolismo
6.
J Lipid Res ; 54(7): 1927-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23670531

RESUMEN

Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.


Asunto(s)
Apolipoproteína C-I/química , Fosfatidilcolinas/química , Trioleína/química , Agua/química , Apolipoproteína C-I/genética , Humanos , Mutación Puntual , Estructura Secundaria de Proteína , Propiedades de Superficie
7.
J Lipid Res ; 54(7): 1939-48, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620136

RESUMEN

Many of the apolipoproteins in HDL can elicit cholesterol efflux via ABCA1, a critical initial step in HDL formation. Recent work has indicated that omnipresent amphipathic helices play a critical role, and these have been studied intensively in the most common HDL protein, apolipoprotein (apo)A-I. However, little information exists about helical domain arrangement in other apolipoproteins. We studied two of the smallest apolipoproteins known to interact with ABCA1, human apoA-II and apoC-I, in terms of ability to reorganize phospholipid (PL) bilayers and to promote ABCA1-mediated cholesterol. We found that both proteins contained helical domains that were fast and slow with respect to solubilizing PL. ABCA1-medated efflux required a minimum of a bihelical polypeptide comprised of at least one each of a slow and fast lipid reorganizing domain. In both proteins, the fast helix was located at the C terminus preceded by a slow helix. Helical placement in apoC-I was not critical for ABCA1 activity, but helix swaps in apoA-II dramatically disrupted cholesterol efflux, indicating that the tertiary structure of the longer apolipoprotein is important for the pathway. This work has implications for a more complete molecular understanding of apolipoprotein-mediated cholesterol efflux.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/química , Apolipoproteína A-II/química , Apolipoproteína C-I/química , Colesterol/química , Fosfolípidos/química , Apolipoproteína C-I/genética , Humanos , Membrana Dobles de Lípidos/química , Mutación Puntual , Solubilidad
8.
Biochemistry ; 51(6): 1238-48, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22264166

RESUMEN

Apolipoprotein C-I (apoC-I) is an important constituent of high-density lipoprotein (HDL) and is involved in the accumulation of cholesterol ester in nascent HDL via inhibition of cholesterol ester transfer protein and potential activation of lecithin:cholesterol acyltransferase (LCAT). As the smallest exchangeable apolipoprotein (57 residues), apoC-I transfers between lipoproteins via a lipid-binding motif of two amphipathic α-helices (AαHs), spanning residues 7-29 and 38-52. To understand apoC-I's behavior at hydrophobic lipoprotein surfaces, oil drop tensiometry was used to compare the binding to triolein/water (TO/W) and palmitoyloleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. When apoC-I binds to either interface, the surface tension (γ) decreases by ~16-18 mN/m. ApoC-I can be exchanged at both interfaces, desorbing upon compression and readsorbing on expansion. The maximal surface pressures at which apoC-I begins to desorb (Π(max)) were 16.8 and 20.7 mN/m at TO/W and POPC/TO/W interfaces, respectively. This suggests that apoC-I interacts with POPC to increase its affinity for the interface. ApoC-I is more elastic on POPC/TO/W than TO/W interfaces, marked by higher values of the elasticity modulus (ε) on oscillations. At POPC/TO/W interfaces containing an increasing POPC:TO ratio, the pressure at which apoC-I begins to be ejected increases as the phospholipid surface concentration increases. The observed increase in apoC-I interface affinity due to higher degrees of apoC-I-POPC interactions may explain how apoC-I can displace larger apolipoproteins, such as apoE, from lipoproteins. These interactions allow apoC-I to remain bound to the interface at higher Π values, offering insight into apoC-I's rearrangement on triacylglycerol-rich lipoproteins as they undergo Π changes during lipoprotein maturation by plasma factors such as lipoprotein lipase.


Asunto(s)
Apolipoproteína C-I/química , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Lipoproteínas/antagonistas & inhibidores , Modelos Moleculares , Fosfolípidos/química , Triglicéridos/antagonistas & inhibidores , Trioleína/química , Agua/química , Apolipoproteína C-I/metabolismo , Apolipoproteínas E/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/química , Interacciones Farmacológicas/fisiología , Humanos , Lipoproteínas/química , Fosfolípidos/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína/fisiología , Propiedades de Superficie , Triglicéridos/química , Trioleína/metabolismo , Agua/metabolismo
9.
Reprod Fertil Dev ; 22(8): 1183-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20883643

RESUMEN

Three distinct bands with high electrophoretic migration rates were isolated and purified from rainbow trout seminal plasma. The molecular masses of these bands were determined to be 5158.8, 4065.9 and 4929.0 Da. The N-terminal amino acids sequences were elucidated and were found to have high homology with Atlantic salmon apolipoprotein C-I. It can be concluded that apolipoprotein C-I is a major component of rainbow trout seminal plasma. Further studies are necessary to confirm the protective effects of apolipoprotein C-I on spermatozoa in terms of the stabilisation of the sperm membrane.


Asunto(s)
Apolipoproteína C-I/aislamiento & purificación , Proteínas de Peces/aislamiento & purificación , Oncorhynchus mykiss/metabolismo , Semen/química , Secuencia de Aminoácidos , Animales , Apolipoproteína C-I/química , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Cromatografía de Fase Inversa , Electroforesis en Gel de Poliacrilamida , Proteínas de Peces/química , Masculino , Datos de Secuencia Molecular , Peso Molecular , Homología de Secuencia de Aminoácido
10.
J Lipid Res ; 51(7): 1943-52, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20335569

RESUMEN

Timely sensing of lipopolysaccharide (LPS) is critical for the host to fight invading Gram-negative bacteria. We recently showed that apolipoprotein CI (apoCI) (apoCI1-57) avidly binds to LPS, involving an LPS-binding motif (apoCI48-54), and thereby enhances the LPS-induced inflammatory response. Our current aim was to further elucidate the structure and function relationship of apoCI with respect to its LPS-modulating characteristics and to unravel the mechanism by which apoCI enhances the biological activity of LPS. We designed and generated N- and C-terminal apoCI-derived peptides containing varying numbers of alternating cationic/hydrophobic motifs. ApoCI1-38, apoCI1-30, and apoCI35-57 were able to bind LPS, whereas apoCI1-23 and apoCI46-57 did not bind LPS. In line with their LPS-binding characteristics, apoCI1-38, apoCI1-30, and apoCI35-57 prolonged the serum residence of 125I-LPS by reducing its association with the liver. Accordingly, both apoCI1-30 and apoCI35-57 enhanced the LPS-induced TNFalpha response in vitro (RAW 264.7 macrophages) and in vivo (C57Bl/6 mice). Additional in vitro studies showed that the stimulating effect of apoCI on the LPS response resembles that of LPS-binding protein (LBP) and depends on CD14/ Toll-like receptor 4 signaling. We conclude that apoCI contains structural elements in both its N-terminal and C-terminal helix to bind LPS and to enhance the proinflammatory response toward LPS via a mechanism similar to LBP.


Asunto(s)
Apolipoproteína C-I/química , Apolipoproteína C-I/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos , Estructura Secundaria de Proteína , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Secuencia de Aminoácidos , Animales , Apolipoproteína C-I/genética , Línea Celular , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Unión Proteica , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA