Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.492
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38995165

RESUMEN

A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Arena , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , República de Corea , Arena/microbiología , Agua de Mar/microbiología , Ubiquinona
2.
Artículo en Inglés | MEDLINE | ID: mdl-39017669

RESUMEN

A bacterial strain, designated S6T, was isolated from the sandy soil on a rocky mountain in South China. Cells of S6T were Gram-stain-negative, aerobic, non-spore-forming, non-motile and non-prosthecae-producing. 16S rRNA gene sequence analysis revealed the highest similarities to 12 uncultured bacteria, followed by Phenylobacterium sp. B6.10-61 (97.14 %). The closest related validly published strains are Caulobacter henricii ATCC 15253T (96.15 %), Phenylobacterium conjunctum FWC 21T (96.08 %) and Caulobacter mirabilis FWC 38T (96.08 %). Phylogenetic analysis based on 16S rRNA gene, genome and proteome sequences demonstrated that S6T formed a separated lineage in the genus Phenylobacterium. Strain S6T contained Q-10 (97.5 %) as the major ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The polar lipid profile consisted of phosphatidylglycerol, an unknown phosphoglycolipid and three unknown glycolipids. The assembled genome comprises a chromosome with a length of 5.5 Mb and a plasmid of 96 014 bp. The G+C content was 67.6 mol%. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus it is proposed that strain S6T represents a novel species in the genus Phenylobacterium, for which the name Phenylobacterium montanum sp. nov. is proposed. The type strain is S6T (=NBRC 115419T=GCMCC 1.18594T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Ubiquinona , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , China , Fosfolípidos/análisis , Fosfolípidos/química , Genoma Bacteriano , Arena/microbiología
3.
PeerJ ; 12: e17727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011380

RESUMEN

Background: Sandy beaches are dynamic environments housing a large diversity of organisms and providing important environmental services. Meiofaunal metazoan are small organisms that play a key role in the sediment. Their diversity, distribution and composition are driven by sedimentary and oceanographic parameters. Understanding the diversity patterns of marine meiofauna is critical in a changing world. Methods: In this study, we investigate if there is seasonal difference in meiofaunal assemblage composition and diversity along 1 year and if the marine seascapes dynamics (water masses with particular biogeochemical features, characterized by temperature, salinity, absolute dynamic topography, chromophoric dissolved organic material, chlorophyll-a, and normalized fluorescent line height), rainfall, and sediment parameters (total organic matter, carbonate, carbohydrate, protein, lipids, protein-to-carbohydrate, carbohydrate-to-lipids, and biopolymeric carbon) affect significatively meiofaunal diversity at a tropical sandy beach. We tested two hypotheses here: (i) meiofaunal diversity is higher during warmer months and its composition changes significatively among seasons along a year at a tropical sandy beach, and (ii) meiofaunal diversity metrics are significantly explained by marine seascapes characteristics and sediment parameters. We used metabarcoding (V9 hypervariable region from 18S gene) from sediment samples to assess the meiofaunal assemblage composition and diversity (phylogenetic diversity and Shannon's diversity) over a period of 1 year. Results: Meiofauna was dominated by Crustacea (46% of sequence reads), Annelida (28% of sequence reads) and Nematoda (12% of sequence reads) in periods of the year with high temperatures (>25 °C), high salinity (>31.5 ppt), and calm waters. Our data support our initial hypotheses revealing a higher meiofaunal diversity (phylogenetic and Shannon's Diversity) and different composition during warmer periods of the year. Meiofaunal diversity was driven by a set of multiple variables, including biological variables (biopolymeric carbon) and organic matter quality (protein content, lipid content, and carbohydrate-to-lipid ratio).


Asunto(s)
Biodiversidad , Sedimentos Geológicos , Estaciones del Año , Animales , Sedimentos Geológicos/química , Océano Atlántico , Organismos Acuáticos , Playas , Clima Tropical , Salinidad , Arena
4.
Water Sci Technol ; 90(1): 61-74, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007307

RESUMEN

Wastewater reuse is one of the crucial water resources in Egypt due to the ongoing need to increase water resources and close the supply-demand gap. In this study, a new coagulant has been investigated before sand filters as an advanced wastewater treatment method. The sand filter pilot was run at a hydraulic loading rate of 0.75 m/h and two different dosages of three coagulants (Alum, FeCl3, and Ferrate VI) were selected using the jar tests. The sand filter without coagulant removed 12% of BOD5 and 70% of turbidity. Applying in-line coagulation before the sand filter provided effluents with better quality, especially for turbidity, organics, and microorganisms. Ferrate provided the highest removal of turbidity (90%) and BOD5 (93%) at very low dosages and lower costs compared with other coagulants, however, it adversely impacted both conductivity and dissolved solids. A significant effect on reducing bacteria was obtained with 40.0 mg/L of alum. According to the study's findings, the ferrate coagulant enhanced the sand filter's performance producing effluents with high quality, enabling it to meet strict water reuse regulations as well as aquatic environmental and health preservations.


Asunto(s)
Filtración , Hierro , Aguas Residuales , Purificación del Agua , Filtración/métodos , Hierro/química , Aguas Residuales/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Arena/química , Dióxido de Silicio/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-39037442

RESUMEN

Two Gram-stain-negative, aerobic, milk-white coloured, non-motile, short rod-shaped bacteria, designated as strains SYSU D60010T and SYSU D60012T, were isolated from sand samples collected from the Taklimakan Desert of Xinjiang Province in China. Both strains were positive for oxidase, catalase and nitrate reduction, but negative for amylase, H2S production, hydrolysis of gelatin and cellulase. Strains SYSU D60010T and SYSU D60012T grew well at 28 °C, at pH 7 and had the same NaCl tolerance range of 0-1 % (w/v). The major fatty acids (>5 %) of strains SYSU D60010T and SYSU D60012T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), iso-C19 : 0 cyclo ω8c, C16 : 0 and iso-C18 : 1 2-OH. Q-10 was the only respiratory ubiquinone. Strains SYSU D60010T and SYSU D60012T showed high 16S rRNA gene sequence similarities to Aestuariivirga litoralis SYSU M10001T (94.2 and 94.1 %), Rhodoligotrophos jinshengii BUT-3T (92.0 and 91.9 %) and Rhodoligotrophos appendicifer 120-1T (91.8 and 91.7 %), and the genomes were 7.4 and 5.8 Mbp in size with DNA G+C contents of 62.8 and 63.0 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic characteristics indicated that these two strains represent a novel genus and two novel species within the family Aestuariivirgaceae. We propose the name Taklimakanibacter deserti gen. nov., sp. nov. for strain SYSU D60010T, representing the type strain of this species (=KCTC 52783T =NBRC 113344T) and Taklimakanibacter lacteus gen. nov., sp. nov. for strain SYSU D60012T, representing the type strain of this species (=KCTC 52785T=NBRC 113128T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Clima Desértico , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , China , Ubiquinona/análogos & derivados , Arena/microbiología
7.
J Contam Hydrol ; 265: 104395, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018629

RESUMEN

Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.


Asunto(s)
Filtración , Microplásticos , Poliestirenos , Zeolitas , Zeolitas/química , Poliestirenos/química , Microplásticos/química , Cuarzo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Arena/química , Purificación del Agua/métodos , Propiedades de Superficie
8.
Environ Sci Pollut Res Int ; 31(27): 39748-39759, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833052

RESUMEN

The objective of this study is to assess the effectiveness of a novel structure comprising a geocomposite drainage layer and a thin sand layer (GDL + sand) in mitigating the rapid dumping of excavated clay and its associated issues, such as landslides. Two sets of direct shear tests were conducted to investigate the influence of sand layer thickness and compaction degree on the interface shear behavior of the GDL + sand structure. As the sand layer thickness increased, both the interface shear strength and friction angle gradually increased, first more sharply and then at a slower rate toward stability, while the interface cohesion decreased gradually. The optimal sand layer thickness for achieving the most effective reinforcement in stabilizing the clay was identified as 10 mm. A higher sand layer compaction degree was found to result in increased interface shear strength, interface friction angle, and interface cohesion. Building on these findings, the reinforcing efficiency of the GDL + sand structure was investigated through mechanism analysis in comparison to that of a geogrid + sand structure and GDL structure as per the interface friction coefficient. The ranking of interface friction coefficients among the three structures emerged as: geogrid + sand > GDL + sand > GDL. These results suggests that the GDL + sand structure exhibits superior reinforcement efficiency compared to the GDL structure and offers better drainage efficiency than the geogrid + sand structure.


Asunto(s)
Arcilla , Arena , Arena/química , Arcilla/química , Resistencia al Corte , Silicatos de Aluminio/química , Dióxido de Silicio/química
9.
World J Microbiol Biotechnol ; 40(7): 229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825655

RESUMEN

Biocementation, driven by ureolytic bacteria and their biochemical activities, has evolved as a powerful technology for soil stabilization, crack repair, and bioremediation. Ureolytic bacteria play a crucial role in calcium carbonate precipitation through their enzymatic activity, hydrolyzing urea to produce carbonate ions and elevate pH, thus creating favorable conditions for the precipitation of calcium carbonate. While extensive research has explored the ability of ureolytic bacteria isolated from natural environments or culture conditions, bacterial synergy is often unexplored or under-reported. In this study, we isolated bacterial strains from the local eutrophic river canal and evaluated their suitability for precipitating calcium carbonate polymorphs. We identified two distinct bacterial isolates with superior urea degradation ability (conductivity method) using partial 16 S rRNA gene sequencing. Molecular identification revealed that they belong to the Comamonas and Bacillus genera. Urea degradation analysis was performed under diverse pH (6,7 and 8) and temperature (15 °C,20 °C,25 °C and 30 °C) ranges, indicating that their ideal pH is 7 and temperature is 30 °C since 95% of the urea was degraded within 96 h. In addition, we investigated these strains individually and in combination, assessing their microbially induced carbonate precipitation (MICP) in silicate fine sand under low (14 ± 0.6 °C) and ideal temperature 30 °C conditions, aiming to optimize bio-mediated soil enhancement. Results indicated that 30 °C was the ideal temperature, and combining bacteria resulted in significant (p ≤ 0.001) superior carbonate precipitation (14-16%) and permeability (> 10- 6 m/s) in comparison to the average range of individual strains. These findings provide valuable insights into the potential of combining ureolytic bacteria for future MICP research on field applications including soil erosion mitigation, soil stabilization, ground improvement, and heavy metal remediation.


Asunto(s)
Bacillus , Biodegradación Ambiental , Carbonato de Calcio , ARN Ribosómico 16S , Arena , Microbiología del Suelo , Urea , Urea/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus/enzimología , Concentración de Iones de Hidrógeno , ARN Ribosómico 16S/genética , Arena/microbiología , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Temperatura , Filogenia , Precipitación Química
10.
Environ Sci Pollut Res Int ; 31(31): 43874-43895, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910184

RESUMEN

Use of waste wood biomass for bioenergy produces wood ash as a by-product; this ash is typically landfilled, but can potentially play an important role in soil improvement and forest restoration. In particular, high-carbon wood ash biochar (HCWAB) could supply nutrients, improve substrate water-holding capacity and pH, and emulate the ecosystem benefits of wildfire residues. Thickened tailings sites at metal mines across Canada are subject to stringent restoration regulations that entail planting of native trees to promote rapid reforestation. While HCWAB may prove beneficial in this context, field trials have been very limited to date. We conducted a large-scale, replicated field trial on sand-capped tailings at an operational gold mine in the Canadian boreal forest to assess the impact of HCWAB (at dosages of 0, 6.4, 12.8, and 19.1 t/ha) on survival and growth of four native tree species, as well as substrate chemical properties and element uptake in tree tissues. After 2 years, the survival of planted, native trees was highest at low to moderate application rates; HCWAB dosages above 13 t/ha presented reduced tree survival to levels comparable to unamended substrates. Tree growth was higher across all HCWAB doses relative to growth in samples planted on untreated substrates; tree species and initial size also had large impacts on final tree survival and aboveground growth. The survival of Betula papyrifera was significantly higher than other species, while smaller transplanted trees in general survived in greater numbers compared to larger size classes. Volunteer herbaceous vegetation significantly increased at the higher HCWAB application dosages and tree performance was negatively correlated with vegetation cover, consistent with a resource competition effect. HCWAB additions to sand-capped mine tailings did not significantly alter tree tissue concentrations or substrate availability of potentially toxic metals (Cd, Cu, Al). We conclude that low to moderate dosages of HCWAB on sand-capped tailings, particularly between 6.4 and 12.8 t/ha, may offer benefits to early tree survival, growth, and substrate nutrient status without causing significant risks of phytotoxicity and recommend future field trials focus on strategies to reduce tree competition with competing vegetation.


Asunto(s)
Carbón Orgánico , Minería , Árboles , Madera , Carbón Orgánico/química , Madera/química , Arena , Carbono , Suelo/química , Canadá
11.
Sci Rep ; 14(1): 14791, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926449

RESUMEN

The effects of wind erosion, one of the crucial causes of soil desertification in the world, on the terrestrial ecosystem are well known. However, ecosystem responses regarding soil microbial carbon metabolism to sand deposition caused by wind erosion, a crucial driver of biogeochemical cycles, remain largely unclear. In this study, we collected soil samples from typical aeolian deposition farmland in the Songnen Plain of China to evaluate the effects of sand deposition on soil properties, microbial communities, and carbon metabolism function. We also determined the reads number of carbon metabolism-related genes by high-throughput sequencing technologies and evaluated the association between sand deposition and them. The results showed that long-term sand deposition resulted in soil infertile, roughness, and dryness. The impacts of sand deposition on topsoil were more severe than on deep soil. The diversity of soil microbial communities was significantly reduced due to sand deposition. The relative abundances of Nitrobacteraceae, Burkholderiaceae, and Rhodanobacteraceae belonging to α-Proteobacteria significantly decreased, while the relative abundances of Streptomycetaceae and Geodermatophilaceae belonging to Actinobacteria increased. The results of the metagenomic analysis showed that the gene abundances of carbohydrate metabolism and carbohydrate-activity enzyme (GH and CBM) significantly decreased with the increase of sand deposition amount. The changes in soil microbial community structure and carbon metabolism decreased soil carbon emissions and carbon cycling in aeolian deposition farmland, which may be the essential reasons for land degradation in aeolian deposition farmland.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Carbono/análisis , China , Suelo/química , Ecosistema , Granjas , Microbiota , Arena/microbiología , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Viento
12.
Environ Monit Assess ; 196(7): 619, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878080

RESUMEN

Helicobacter pylori is a microorganism that infects 60% of the population and is considered the main cause of atrophic gastritis, gastric and duodenal ulcers, and gastric cancer. Different emerging pathogens have been found in drinking water and their presence is considered to be an important public health problem. For this reason, it is necessary to carry out the validation of reliable technologies for this type of pathogens and evaluate their performance. This paper reports, for the first time, H. pylori reduction in a drinking water pilot plant of two slow sand filters (SSF). Inlet water was taken from a gravel filtration system of a rural water supply in Colombia and then inoculated with viable cells of H. pylori. By determining the Genomic Units (GU) through quantitative Polymerase Chain Reaction (qPCR), the concentration of GU/sample was measured. In the inlet water amplification for SSF1 and SSF2 were 5.13 × 102 ± 4.48 × 102 and 6.59 × 102 ± 7.32 × 102, respectively, while for the treated water they were 7.0 ± 5.6 and 2.05 × 101 ± 2.9 × 101 GU/sample for SSF1 and SSF2, respectively. The SSF pilot plant reached up to 3 log reduction units of H. pylori; therefore, since there is not an H. pylori contamination indicator and its periodic monitoring is financially complicated, the SSF could guarantee the drinking water quality necessity that exists in rural areas and small municipalities in developing countries, where infection rates and prevalence of this pathogen are high.


Asunto(s)
Agua Potable , Filtración , Helicobacter pylori , Microbiología del Agua , Purificación del Agua , Abastecimiento de Agua , Filtración/métodos , Agua Potable/microbiología , Purificación del Agua/métodos , Arena , Colombia
13.
Ying Yong Sheng Tai Xue Bao ; 35(4): 897-908, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884224

RESUMEN

Understanding water absorption mechanisms of sand-fixing plants is important for the rational establishment of plant community structures, thereby providing a scientific basis for desertification control and the efficient utilization of water resources in sandy areas. Based on the hydrogen and oxygen isotopic compositions of precipi-tation, soil water, xylem water, and groundwater, coupled with soil water-heat dynamics, annual water consumption characteristics of vegetation, using the multi-source linear mixing model (IsoSource), we analyzed the differences in water sources between Salix psammophila and Artemisia ordosica, during winter and the growing season. We further examined the effects of groundwater depth (2 m and 10 m), soil freezing-thawing, and drought on their water utilization to elucidate water absorption mechanisms of those species. The results showed that: 1) During soil freezing-thawing period (January to March), S. psammophila mainly utilized soil water in 60-120 cm depths below the frozen layer (69.1%). In the green-up season (April and May), soil water from the 0-60 cm layers could satisfy the water demand of S. psammophila (30.9%-87.6%). During the dry period of the growing season (June), it predominantly utilized soil water at the depth of 120-160 cm (27.4%-40.8%). Over the rainy season (July and September), soil water in 0-60 cm depths provided 59.8%-67.9% of the total water required. A. ordosica, with shallow roots, could not utilize soil water after complete freezing of root zone but could overwinter by storing water in rhizomes during autumn. During the growing season, it primarily relied on 0-40 cm soil layer (23.4%-86.8%). During the dry period, it mainly utilized soil water from 40-80 cm and 80-160 cm soil layers, with utilization rates of 14.6%-74.4% and 21.8%-78.2%, respectively. 2) With decreasing groundwater depth, vegetation shifted its water absorption depth upward, with water source of S. psammophila transitioning from 120-160 cm to 60-160 cm layers, while A. ordosica shifted water absorption depth from 80-160 cm to 0-40 cm. S. psammophila's utilization of soil water is influenced by transpiration, adopting an "on-demand" approach to achieve a balance between water supply and energy conservation, whereas A. ordosica tends to utilize shallow soil water, exhibiting a higher depen-dence on water sources from a single soil layer.


Asunto(s)
Artemisia , Salix , Arena , Suelo , Agua , Agua/análisis , Agua/metabolismo , Artemisia/crecimiento & desarrollo , Artemisia/metabolismo , China , Suelo/química , Salix/crecimiento & desarrollo , Salix/metabolismo , Clima Desértico , Agua Subterránea/química , Agua Subterránea/análisis , Ecosistema
14.
PLoS One ; 19(6): e0304204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843205

RESUMEN

Vegetation construction is a key process for restoring and rehabilitating degraded ecosystems. However, the spatial pattern and process of native plants colonized by different vegetation restoration methods in semi-arid sandy land are poorly understood. In this study, two artificial vegetation restoration patterns (P1: row belt restoration pattern of Salix matsudana with low coverage; P2: a living sand barrier pattern of Caryopteris mongolica with low coverage) were selected to analyze the spatial distribution pattern and interspecific association of the colonizing native shrubs. The effects of the two restoration models on the spatial patterns of the main native semi-shrubs of the colonies (i.e., Artemisia ordosica and Corethrodendron lignosum var. leave) were studied using single variable and bivariate transformation point pattern analysis based on Ripley's L function. Our results showed that two restoration patterns significantly facilitated the establishment of A. ordosica and C. lignosum var. leave, with their coverage reaching 17.04% and 22.62%, respectively. In P1, the spatial distribution pattern of colonial shrubs tended to be a random distribution, and there was no spatial correlation between the species. In P2, the colonial shrub aggregation distribution was more dominant, and with the increase in scale, the aggregation distribution changed to a random distribution, whereas the interspecific association was negatively correlated. The differences in the spatial distribution patterns of colonized native semi-shrubs in these two restoration patterns could be related to the life form of planted plants, configuration methods, biological characteristics of colonized plants, and intra- and interspecific relationships of plants. Our results demonstrated that the nurse effect of artificially planted vegetation in the early stage of sand ecological restoration effectively facilitated the near-natural succession of communities. These findings have important implications for ecological restoration of degraded sandy land in the semi-arid region of northern China.


Asunto(s)
Ecosistema , China , Conservación de los Recursos Naturales/métodos , Artemisia/crecimiento & desarrollo , Artemisia/fisiología , Salix/crecimiento & desarrollo , Restauración y Remediación Ambiental/métodos , Arena
15.
J Sports Sci Med ; 23(2): 465-474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841634

RESUMEN

This study aimed to identify the optimal surface for sprint interval training to maximize transfer effects on physical performance measures on the grass pitch. Using a randomized controlled trial design, 40 collegiate female soccer players were equally assigned to three experimental groups performing short sprint interval training (SSIT: 4 sets of 10 repetitions with 5 seconds all-out running, with a 50-second recovery period between each effort and a 3-minute rest interval between sets) on SAND, GRASS, LAND, and a control group. Before and after a 7-week training period, participants underwent a series of field-based tests to evaluate countermovement jump (CMJ), 20-m linear sprint, Illinois change of direction (CoD) speed, Yo-Yo IR1, 2.4 km time trial, and maximal kicking distance (MKD) performance. A two-way analysis of variance with repeated measures was conducted on the data, along with Bonferroni post hoc testing. After the intervention, the control group did not show any changes, while the SAND, GRASS and LAND training groups demonstrated improvements (p = 0.001) in their performance as follows: CMJ (effect size [ES] = 1.21, 0.97, 0.64), 20-m linear sprint (ES = -0.81, -0.55, -0.41), Illinois CoD (ES = -0.72, -0.79, -0.41), Yo-Yo IR1 (ES = 1.86, 1.19, 1.12), 2.4 km time trail (ES = -0.82, -0.62, -0.49), and MKD (ES = 0.60, 0.90, 0.72), respectively. Comparative analysis of SAND, GRASS, and LAND revealed that performing SSIT on SAND results in a significantly greater gain in CMJ than LAND (p = 0.041). Analyzing individual responses to training interventions indicated that the training surface had a favorable influence on CMJ (SAND vs. LAND, p = 0.009), but on other variables no statistically significant (p > 0.05) differences were observed. Considering these findings, it is advised that strength and conditioning coaches use the SAND surface as the initial choice for SSIT sessions regarding greater gains (i.e., ES) in performance. This recommendation aims to facilitate more favorable transfer in physical fitness adaptation on a soccer grass pitch. In case of unavailability of SAND surface, GRASS surface would be a suitable alternative to enhance the physical fitness of collegiate female soccer players.


Asunto(s)
Rendimiento Atlético , Aptitud Física , Poaceae , Carrera , Fútbol , Humanos , Fútbol/fisiología , Femenino , Rendimiento Atlético/fisiología , Aptitud Física/fisiología , Adulto Joven , Carrera/fisiología , Arena , Entrenamiento de Intervalos de Alta Intensidad/métodos , Prueba de Esfuerzo
16.
Sci Total Environ ; 940: 173548, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38830418

RESUMEN

Coastal dunes result from complex interactions between sand transport, topography and vegetation. However, uncertainty still persists due to limited quantitative analyses, integrating plant distribution and morphologic changes. This study aims to assess the initiation and maintenance of feedback processes by analysing the early development stages of incipient foredunes, combining data on the evolution of the plant cover and communities and dune morphology. Over three years, the monitoring of a newly formed dune (1 ha plot) reveals the progressive plant colonisation and the episodic accumulation of sand around vegetated areas controlled by sediment availability. Distinct colonisation rates were observed, influenced by inherited marine conditions, namely topography and presence of beach wrack. Berm-ridges provided elevations above the critical threshold for plant colonisation and surface roughness, aiding sediment accumulation. Beach wrack above this threshold led to rapid expansion and higher plant concentration. In the initial stages, vegetation cover significantly influenced sediment accumulation patterns, with higher accumulation around areas with high plant cover and low slopes or around areas with sparse vegetation but milder slopes. As the dune system matured and complexity grew, the link between vegetation cover and accumulation became nonlinear. Mid to low coverages (5-30 %) retained most of the observed accumulation, especially when coupled with steep slopes, resulting from positive feedbacks between vegetation, topography and sand transport. As foredune developed, vegetation cover and diversity increased while inherited morphologies grew vertically, explaining the emergence of dune ridge morphological types. Flat surfaces lacking wrack materials experienced a three-year delay in colonisation and sand accumulation, leading to the formation of terrace-type incipient foredunes. These observations underline feedback processes during the early stages of dune formation, with physical feedbacks primarily driving initiation and biophysical feedbacks prevailing in subsequent colonisation stages.


Asunto(s)
Ecosistema , Plantas , Sedimentos Geológicos , Monitoreo del Ambiente , Arena , Desarrollo de la Planta
17.
Rev Bras Parasitol Vet ; 33(2): e002124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38896755

RESUMEN

Ancylostoma spp. are found worldwide. Infected dog and cat feces can contaminate soil in public places. Despite prophylactic measures being available, studies on direct remediation of Ancylostoma-contaminated soils are scarce. This study aimed to determine the impact of heat treatment and liming on the viability of Ancylostoma spp. eggs in artificially contaminated sandy soil. Sterilized sand samples were contaminated with Ancylostoma spp. eggs extracted from infected dogs' feces. Samples were heated (trial I) to 70 °C or 80 °C, then sieved after 24 hours (212, 90, 38, and 25 µm). Larval cultures were assessed for larval development following heat treatment. Five quicklime concentrations (trial II; 50, 30, 20, 10 and 5%) were used to treat sand. The effect of liming on larval cultures was assessed by measuring embryonic development. Filariform larvae were exposed to 20% quicklime (25 °C and 37 °C, 20 min). Heat treatment destroys Ancylostoma spp. eggs and prevents in vitro larval development. Liming at 50, 30, and 20% concentrations made embryonic development impossible. However, filariform larvae treated with 20% lime solution retained their motility. Heating at 70 °C and liming at 20% were sufficient to make Ancylostoma spp. egg embryogenesis impossible in experimentally contaminated sand samples.


Asunto(s)
Ancylostoma , Calor , Óvulo , Animales , Ancylostoma/aislamiento & purificación , Arena/parasitología , Compuestos de Calcio , Calefacción , Óxidos
18.
Chemosphere ; 361: 142375, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772514

RESUMEN

Oil sands process affected water (OSPW) is produced during bitumen extraction and typically contains high concentrations of trace metals. Constructed wetlands have emerged as a cost effective and green technology for the treatment of metals in wastewaters. Whether the addition of amendments to constructed wetlands can improve metal removal efficiency is unknown. We investigated the synergistic effects of carbon based amendments and wetland plant species in removal of arsenic, cadmium, cobalt, chromium, copper, nickel, and selenium from OSPW. Three native wetland species (Carex aquatilis, Juncus balticus, Scirpus validus) and two amendments (canola straw biochar, nano humus) were investigated in constructed wetland mesocosms over 60 days. Amendment effect on metal removal efficiency was not significant, while plant species effect was. Phytoremediation resulted in removal efficiencies of 78.61-96.31 % for arsenic, cadmium, and cobalt. Carex aquatilis had the highest removal efficiencies for all metals. Amendments alone performed well in removing some metals and were comparable to phytoremediation for cadmium, cobalt, copper, and nickel. Metals were primarily distributed in roots with negligible translocation to shoots. Our work provides insights into the role of plants and amendments during metal remediation and their complex interactions in constructed treatment wetlands.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Sustancias Húmicas , Contaminantes Químicos del Agua , Humedales , Carbón Orgánico/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Metales Pesados/metabolismo , Metales Pesados/análisis , Arena , Aguas Residuales/química , Metales/metabolismo , Arsénico/metabolismo , Arsénico/análisis , Hidrocarburos/metabolismo
19.
Sci Total Environ ; 938: 173354, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796007

RESUMEN

Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.


Asunto(s)
Bacterias , Minería , Microbiología del Suelo , Suelo , Suelo/química , Arena , Nitrógeno , Carbono
20.
J Contam Hydrol ; 264: 104363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805790

RESUMEN

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Asunto(s)
Silicatos de Aluminio , Cationes , Arcilla , Agua Subterránea , Minería , Arena , Arcilla/química , Concentración de Iones de Hidrógeno , Cationes/química , Agua Subterránea/química , Silicatos de Aluminio/química , Arena/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...