Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.845
Filtrar
1.
Sci Signal ; 17(843): eadr3505, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954639

RESUMEN

Opioids trigger myelin insulation of reward circuit axons in a feedforward loop of addiction.


Asunto(s)
Analgésicos Opioides , Humanos , Analgésicos Opioides/farmacología , Animales , Axones/metabolismo , Axones/fisiología , Vaina de Mielina/metabolismo , Recompensa , Trastornos Relacionados con Opioides
2.
Elife ; 132024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949652

RESUMEN

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Asunto(s)
Caenorhabditis elegans , Microtúbulos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Acetilación , Axones/metabolismo , Axones/fisiología , Fosforilación , Regeneración Nerviosa , Cinesinas/metabolismo , Cinesinas/genética
3.
Sci Adv ; 10(27): eado9120, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959311

RESUMEN

A bioinspired hydrogel composed of hyaluronic acid-graft-dopamine (HADA) and a designer peptide HGF-(RADA)4-DGDRGDS (HRR) was presented to enhance tissue integration following spinal cord injury (SCI). The HADA/HRR hydrogel manipulated the infiltration of PDGFRß+ cells in a parallel pattern, transforming dense scars into an aligned fibrous substrate that guided axonal regrowth. Further incorporation of NT3 and curcumin promoted axonal regrowth and survival of interneurons at lesion borders, which served as relays for establishing heterogeneous axon connections in a target-specific manner. Notable improvements in motor, sensory, and bladder functions resulted in rats with complete spinal cord transection. The HADA/HRR + NT3/Cur hydrogel promoted V2a neuron accumulation in ventral spinal cord, facilitating the recovery of locomotor function. Meanwhile, the establishment of heterogeneous neural connections across the hemisected lesion of canines was documented in a target-specific manner via neuronal relays, significantly improving motor functions. Therefore, biomaterials can inspire beneficial biological activities for SCI repair.


Asunto(s)
Matriz Extracelular , Hidrogeles , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Hidrogeles/química , Ratas , Matriz Extracelular/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Perros , Axones/metabolismo , Axones/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Recuperación de la Función/efectos de los fármacos , Dopamina/metabolismo , Femenino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Médula Espinal/metabolismo
4.
J Biomed Sci ; 31(1): 69, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992696

RESUMEN

BACKGROUND: Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS: Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS: Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS: We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.


Asunto(s)
Plasticidad Neuronal , Proteínas de Unión al ARN , Transmisión Sináptica , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Ratones Noqueados , Axones/metabolismo , Axones/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino , Biosíntesis de Proteínas
5.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995011

RESUMEN

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Asunto(s)
Axones , Factor Neurotrófico Derivado de la Línea Celular Glial , Regeneración Nerviosa , Células de Schwann , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células de Schwann/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Axones/metabolismo , Ratas , Ratas Sprague-Dawley , Femenino , Astrocitos/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39000434

RESUMEN

GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.


Asunto(s)
Axones , Ganglios Espinales , Receptores de GABA , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Ratones , Axones/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Células Cultivadas , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/citología , Técnicas de Cocultivo , Neuronas/metabolismo , Neuronas/efectos de los fármacos
7.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000515

RESUMEN

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Asunto(s)
Axones , Productos Finales de Glicación Avanzada , Nervio Óptico , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/efectos de los fármacos , Axones/metabolismo , Axones/efectos de los fármacos , Axones/patología , Ratones Endogámicos C57BL , Agregado de Proteínas/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 121(31): e2402755121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042673

RESUMEN

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.


Asunto(s)
Orientación del Axón , Proteínas de Drosophila , Proteoglicanos , Semaforinas , Transducción de Señal , Animales , Semaforinas/metabolismo , Semaforinas/genética , Proteoglicanos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Axones/metabolismo , Drosophila melanogaster/metabolismo , Glicosaminoglicanos/metabolismo , Sitios de Unión , Unión Proteica , Neuronas Receptoras Olfatorias/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39000003

RESUMEN

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.


Asunto(s)
Glutamato Carboxipeptidasa II , Traumatismos de los Nervios Periféricos , Remielinización , Animales , Ratones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/metabolismo , Remielinización/efectos de los fármacos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Masculino , Axones/efectos de los fármacos , Axones/metabolismo
10.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970101

RESUMEN

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Asunto(s)
Axones , Macrófagos , Nanofibras , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Axones/metabolismo , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratas , Andamios del Tejido/química , Nanopartículas/química , Ratas Sprague-Dawley , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ratones Endogámicos C57BL
11.
Elife ; 132024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012795

RESUMEN

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Animales , Interneuronas/fisiología , Interneuronas/metabolismo , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Ratones , Encéfalo/fisiología , Encéfalo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Axones/fisiología , Axones/metabolismo , Masculino
12.
Mol Biol Cell ; 35(8): ar109, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985523

RESUMEN

The Drosophila RNA-binding protein (RBP) Nab2 acts in neurons to regulate neurodevelopment and is orthologous to the human intellectual disability-linked RBP, ZC3H14. Nab2 governs axon projection in mushroom body neurons and limits dendritic arborization of class IV sensory neurons in part by regulating splicing events in ∼150 mRNAs. Analysis of the Sex-lethal (Sxl) mRNA revealed that Nab2 promotes an exon-skipping event and regulates m6A methylation on Sxl pre-mRNA by the Mettl3 methyltransferase. Mettl3 heterozygosity broadly rescues Nab2null phenotypes implying that Nab2 acts through similar mechanisms on other RNAs, including unidentified targets involved in neurodevelopment. Here, we show that Nab2 and Mettl3 regulate the removal of a 5'UTR (untranslated region) intron in the trio pre-mRNA. Trio utilizes two GEF domains to balance Rac and RhoGTPase activity. Intriguingly, an isoform of Trio containing only the RhoGEF domain, GEF2, is depleted in Nab2null nervous tissue. Expression of Trio-GEF2 rescues projection defects in Nab2null axons and dendrites, while the GEF1 Rac1-regulatory domain exacerbates these defects, suggesting Nab2-mediated regulation Trio-GEF activities. Collectively, these data indicate that Nab2-regulated processing of trio is critical for balancing Trio-GEF1 and -GEF2 activity and show that Nab2, Mettl3, and Trio function in a common pathway that shapes axon and dendrite morphology.


Asunto(s)
Axones , Dendritas , Proteínas de Drosophila , Drosophila melanogaster , Factores de Intercambio de Guanina Nucleótido , Proteínas de Unión al ARN , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Axones/metabolismo , Dendritas/metabolismo , Drosophila melanogaster/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Empalme del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , Precursores del ARN/metabolismo , Precursores del ARN/genética
13.
Zhen Ci Yan Jiu ; 49(7): 767-776, 2024 Jul 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39020496

RESUMEN

Stroke brings the pathological changes of brain tissues such as hematoma formation or ischemia and hypoxia, which leads to neuronal death and axon degeneration. Axon regeneration after its injury is mainly dependent on the surrounding microenvironment and the related proteins, including glial scar, myelin associated inhibitory factors, axon guidance molecules, and neurotrophic factors. All of them affect axon growth by regulating the morphology and orientation of growth cones, the synaptic stability, and the proliferation and differentiation of neural stem cells. This article summarizes the mechanism of acupuncture in regulating axon regeneration after stroke. Acupuncture inhibits glial scar formation, alleviates the inhibitory effects of its physical and chemical barriers on axon growth, reverses the inhibitory effects of myelin-related inhibitory factors on axon growth, and adjusts the level of axon guidance molecules to promote the proliferation and differentiation of neural stem cells and the regeneration of injured axons, and up-regulates neurotrophic factors. Eventually, post-stroke nerve injury can be ameliorated.


Asunto(s)
Terapia por Acupuntura , Axones , Regeneración Nerviosa , Accidente Cerebrovascular , Humanos , Animales , Axones/metabolismo , Axones/fisiología , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Células-Madre Neurales/metabolismo
14.
Nat Commun ; 15(1): 6068, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025931

RESUMEN

Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.


Asunto(s)
Proteínas de Drosophila , Anticuerpos de Dominio Único , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Anticuerpos de Dominio Único/metabolismo , Drosophila melanogaster/metabolismo , Neuronas Motoras/metabolismo , Dominios PDZ , Axones/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Transporte de Proteínas , Moléculas de Adhesión Celular Neuronal
15.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38985206

RESUMEN

The slender shape of axons makes them uniquely susceptible to mechanical stress. In this issue, Pan, Hu et al. (https://doi.org/10.1083/jcb.202206046) use a microfluidic axon-on-chip device to reveal how actomyosin protects axons from mild mechanical stress, by transiently adopting a beaded shape that helps limit the spread of damaging calcium waves.


Asunto(s)
Axones , Estrés Mecánico , Axones/metabolismo , Axones/patología , Humanos , Animales , Encéfalo/patología , Encéfalo/metabolismo , Actomiosina/metabolismo , Señalización del Calcio , Dispositivos Laboratorio en un Chip
16.
Sci Rep ; 14(1): 16096, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997331

RESUMEN

Peripheral nerve injury is a prevalent clinical problem that often leads to lifelong disability and reduced quality of life. Although peripheral nerves can regenerate, recovery after severe injury is slow and incomplete. The current gold standard treatment, autologous nerve transplantation, has limitations including donor site morbidity and poor functional outcomes, highlighting the need for improved repair strategies. We developed a reproducible in vitro hollow channel collagen gel construct to investigate peripheral nerve regeneration (PNR) by exploring the influence of key extracellular matrix (ECM) proteins on axonal growth and regeneration. Channels were coated with ECM proteins: collagen IV, laminin, or fibronectin and seeded with dorsal root ganglia (DRG) collected from E16 rat embryos to compare the ability of the ECM proteins to enhance axonal growth. Robust axonal extension and Schwann cell (SC) infiltration were observed in fibronectin-coated channels, suggesting its superiority over other ECM proteins. Differential effects of ECM proteins on axons and SCs indicated direct growth stimulation beyond SC-mediated guidance. In vitro laceration injury modeling further confirmed fibronectin's superior pro-regenerative effects, showcasing its potential in enhancing axonal regrowth post-injury. Advancing in vitro modeling that closely replicates native microenvironments will accelerate progress in overcoming the limitations of current nerve repair approaches.


Asunto(s)
Proteínas de la Matriz Extracelular , Ganglios Espinales , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Animales , Regeneración Nerviosa/fisiología , Ratas , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Ganglios Espinales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Axones/fisiología , Axones/metabolismo , Colágeno/metabolismo , Células de Schwann/metabolismo , Células de Schwann/fisiología , Fibronectinas/metabolismo , Ratas Sprague-Dawley , Andamios del Tejido/química , Nervios Periféricos/fisiología , Laminina/metabolismo
17.
Stem Cell Res Ther ; 15(1): 173, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886817

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a disease that causes permanent impairment of motor, sensory, and autonomic nervous system functions. Stem cell transplantation for neuron regeneration is a promising strategic treatment for SCI. However, selecting stem cell sources and cell transplantation based on experimental evidence is required. Therefore, this study aimed to investigate the efficacy of combination cell transplantation using the brain-derived neurotrophic factor (BDNF) over-expressing engineered mesenchymal stem cell (BDNF-eMSC) and induced pluripotent stem cell-derived motor neuron progenitor cell (iMNP) in a chronic SCI rat model. METHOD: A contusive chronic SCI was induced in Sprague-Dawley rats. At 6 weeks post-injury, BDNF-eMSC and iMNP were transplanted into the lesion site via the intralesional route. At 12 weeks post-injury, differentiation and growth factors were evaluated through immunofluorescence staining and western blot analysis. Motor neuron differentiation and neurite outgrowth were evaluated by co-culturing BDNF-eMSC and iMNP in vitro in 2-dimensional and 3-dimensional. RESULTS: Combination cell transplantation in the chronic SCI model improved behavioral recovery more than single-cell transplantation. Additionally, combination cell transplantation enhanced mature motor neuron differentiation and axonal regeneration at the injured spinal cord. Both BDNF-eMSC and iMNP played a critical role in neurite outgrowth and motor neuron maturation via BDNF expression. CONCLUSIONS: Our results suggest that the combined transplantation of BDNF- eMSC and iMNP in chronic SCI results in a significant clinical recovery. The transplanted iMNP cells predominantly differentiated into mature motor neurons. Additionally, BDNF-eMSC exerts a paracrine effect on neuron regeneration through BDNF expression in the injured spinal cord.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Neuronas Motoras , Regeneración Nerviosa , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratas , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Neuronas Motoras/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Axones/metabolismo , Diferenciación Celular , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante
18.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920687

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Asunto(s)
Axones , Cuerpo Estriado , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Proteínas Proto-Oncogénicas c-ret , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Axones/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/citología , Ratones , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas Espinosas Medianas
19.
Lab Chip ; 24(13): 3252-3264, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38841815

RESUMEN

In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.


Asunto(s)
Axotomía , Células Madre Pluripotentes Inducidas , Neuronas , Humanos , Neuronas/citología , Células Madre Pluripotentes Inducidas/citología , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Células Cultivadas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Axones/fisiología , Axones/metabolismo
20.
J Cell Sci ; 137(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864427

RESUMEN

Endocannabinoid signalling mediated by cannabinoid receptor 1 (CB1R, also known as CNR1) is critical for homeostatic neuromodulation of both excitatory and inhibitory synapses. This requires highly polarised axonal surface expression of CB1R, but how this is achieved remains unclear. We previously reported that the α-helical H9 domain in the intracellular C terminus of CB1R contributes to axonal surface expression by an unknown mechanism. Here, we show in rat primary neuronal cultures that the H9 domain binds to the endocytic adaptor protein SGIP1 to promote CB1R expression in the axonal membrane. Overexpression of SGIP1 increases CB1R axonal surface localisation but has no effect on CB1R lacking the H9 domain (CB1RΔH9). Conversely, SGIP1 knockdown reduces axonal surface expression of CB1R but does not affect CB1RΔH9. Furthermore, SGIP1 knockdown diminishes CB1R-mediated inhibition of presynaptic Ca2+ influx in response to neuronal activity. Taken together, these data advance mechanistic understanding of endocannabinoid signalling by demonstrating that SGIP1 interaction with the H9 domain underpins axonal CB1R surface expression to regulate presynaptic responsiveness.


Asunto(s)
Axones , Unión Proteica , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Axones/metabolismo , Ratas , Dominios Proteicos , Humanos , Células Cultivadas , Neuronas/metabolismo , Ratas Sprague-Dawley , Membrana Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...