Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.318
Filtrar
1.
EBioMedicine ; 106: 105246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029427

RESUMEN

BACKGROUND: The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS: Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS: Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION: We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING: Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).


Asunto(s)
Microbioma Gastrointestinal , Neoplasias de la Próstata , Traumatismos por Radiación , Humanos , Masculino , Microbioma Gastrointestinal/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Anciano , Traumatismos por Radiación/etiología , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/diagnóstico , Persona de Mediana Edad , Metagenómica/métodos , Heces/microbiología , ARN Ribosómico 16S/genética , Radioterapia/efectos adversos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de la radiación , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/microbiología , Metagenoma
2.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954148

RESUMEN

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Asunto(s)
Brassica , Celulosa , Cucumis sativus , Rayos gamma , Extractos Vegetales , Brassica/microbiología , Brassica/química , Celulosa/química , Cucumis sativus/microbiología , Cucumis sativus/química , Cucumis sativus/efectos de la radiación , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Microbiología de Alimentos , Bacterias/efectos de la radiación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Embalaje de Alimentos/métodos , Contaminación de Alimentos/análisis , Almacenamiento de Alimentos , Irradiación de Alimentos/métodos , Recuento de Colonia Microbiana
3.
World J Microbiol Biotechnol ; 40(9): 264, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990244

RESUMEN

Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.


Asunto(s)
Bacterias , Bentonita , Rayos gamma , Calor , Viabilidad Microbiana , Bentonita/química , Viabilidad Microbiana/efectos de la radiación , Bacterias/clasificación , Bacterias/efectos de la radiación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Residuos Radiactivos/análisis , Microbiología del Suelo
4.
J Environ Manage ; 366: 121875, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018863

RESUMEN

Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.


Asunto(s)
Desinfección , Desinfección/métodos , Catálisis , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos
5.
mSphere ; 9(7): e0047624, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38980074

RESUMEN

Sterilization is commonly used to remove or reduce the biotic constraints of a soil to allow recolonization by soil-dwelling organisms, with autoclaving and gamma irradiation being the most frequently used approaches. Many studies have characterized sterilization impacts on soil physicochemical properties, with gamma irradiation often described as the preferred approach, despite the lower cost and higher scalability of autoclaving. However, few studies have compared how sterilization techniques impact soil recolonization by microorganisms. Here, we compared how two sterilization approaches (autoclaving; gamma irradiation) and soil washing impacted microbial recolonization of soil from a diverse soil inoculum. Sterilization method had little impact on microbial alpha diversity across recolonized soils. For sterile soil regrowth microcosms, species richness and diversity were significantly reduced by autoclaving relative to gamma irradiation, particularly for fungi. There was no impact of sterilization method on bacterial composition in recolonized soils and minimal impact on fungal composition (P = 0.05). Washing soils had a greater impact on microbial composition than sterilization method, and sterile soil regrowth had negligible impacts on microbial recolonization. These data suggest that sterilization method has no clear impact on microbial recolonization, at least across the soils tested, indicating that soil autoclaving is an appropriate and economical approach for biotically clearing soils.IMPORTANCESterilized soils represent soil-like environments that act as a medium to study microbial colonization dynamics in more "natural" settings relative to artificial culturing environments. Soil sterilization is often carried out by gamma irradiation or autoclaving, which both alter soil properties, but gamma irradiation is thought to be the gentler technique. Gamma irradiation can be cost prohibitive and does not scale well for larger experiments. We sought to examine how soil sterilization technique can impact microbial colonization, and additionally looked at the impact of soil washing which is believed to remove soil toxins that inhibit soil recolonization. We found that both gamma-irradiated and autoclaved soils showed similar colonization patterns when reintroducing microorganisms. Soil washing, relative to sterilization technique, had a greater impact on which microorganisms were able to recolonize the soil. When allowing sterilized soils to regrow (i.e., persisting microorganisms), gamma irradiation performed worse, suggesting that gamma irradiation does not biotically clear soils as well as autoclaving. These data suggest that both sterilization techniques are comparable, and that autoclaving may be more effective at biotically clearing soil.


Asunto(s)
Bacterias , Hongos , Rayos gamma , Microbiología del Suelo , Suelo , Esterilización , Esterilización/métodos , Bacterias/efectos de la radiación , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Suelo/química , Hongos/efectos de la radiación , Hongos/crecimiento & desarrollo , Microbiota/efectos de la radiación , Calor , Biodiversidad
6.
Astrobiology ; 24(8): 783-794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853686

RESUMEN

The district of Perus, located in the city of São Paulo, Brazil, is renowned for its weathered granitic-pegmatitic masses, which harbor a significant number of uraniferous minerals that contribute to ionizing radiation levels up to 20 times higher than the background levels. In this study, aseptically collected mineral samples from the area were utilized to isolate 15 microorganisms, which were subjected to pre-screening tests involving UV-C and UV-B radiation. The microorganisms that exhibited the highest resistance to ultraviolet (UV) radiation were selected for the construction of survival curves for UV-C, broad-band UV-B, and solar simulation resistance testing. Subsequently, the four strains that demonstrated superior survival capabilities under UV radiation exposure were chosen for 16S rRNA gene sequencing. Among these, Nocardioides sp. O4R and Nocardioides sp. MA2R demonstrated the most promising outcomes in the UV radiation resistance assessments, showcasing comparable performance to the well-established radioresistant model organism Deinococcus radiodurans. These findings underscore the potential of naturally occurring high-radiation environments as valuable resources for the investigation of UV-resistant microorganisms. Astrobiology 24, 783-794.


Asunto(s)
Minerales , ARN Ribosómico 16S , Rayos Ultravioleta , Uranio , Brasil , Minerales/química , ARN Ribosómico 16S/genética , Tolerancia a Radiación , Bacterias/efectos de la radiación , Bacterias/genética , Bacterias/aislamiento & purificación , Deinococcus/efectos de la radiación , Deinococcus/aislamiento & purificación , Deinococcus/genética
7.
J Hazard Mater ; 476: 134982, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38917629

RESUMEN

The propagation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) induced by the release of antibiotics poses great threats to ecological safety and human health. In this study, periodate (PI)/FeS2/simulated sunlight (SSL) system was employed to remove representative ARB, ARGs and antibiotics in water. 1 × 107 CFU mL-1 of gentamycin-resistant Escherichia coli was effectively disinfected below limit of detection in PI/FeS2/SSL system under different water matrix and in real water samples. Sulfadiazine-resistant Pseudomonas and Gram-positive Bacillus subtilis could also be efficiently sterilized. Theoretical calculation showed that (110) facet was the most reactive facet on FeS2 to activate PI for the generation of reactive species (·OH, ·O2-, h+ and Fe(IV)=O) to damage cell membrane and intracellular enzyme defense system. Both intracellular and extracellular ARGs could be degraded and the expression levels of multidrug resistance-related genes were downregulated during the disinfection process. Thus, horizontal gene transfer (HGT) of ARB was inhibited. Moreover, PI/FeS2/SSL system could disinfect ARB in a continuous flow reactor and in an enlarged reactor under natural sunlight irradiation. PI/FeS2/SSL system could also effectively degrade the HGT-promoting antibiotic (ciprofloxacin) via hydroxylation and ring cleavage process. Overall, PI/FeS2/SSL exhibited great promise for the elimination of antibiotic resistance from water.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana , Compuestos Ferrosos , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Farmacorresistencia Bacteriana/genética , Luz Solar , Desinfección/métodos , Purificación del Agua/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Contaminantes Químicos del Agua , Microbiología del Agua , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de la radiación , Transferencia de Gen Horizontal
8.
Ann Agric Environ Med ; 31(2): 287-293, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38940114

RESUMEN

INTRODUCTION AND OBJECTIVE: Ultraviolet light in the UV-C band is known as germicidal radiation and was widely used for both sterilization of the equipment and creation of a sterile environment. The aim of the study is to assess the effectiveness of inactivation of microorganisms deposited on surfaces with various textures by UV-C radiation disinfection devices. MATERIAL AND METHODS: Five microorganisms (3 bacteria, virus, and fungus) deposited on metal, plastic, and glass surfaces with smooth and rough textures were irradiated with UV-C light emitted by low-pressure mercury lamp and ultraviolet emitting diodes (LEDs), from a distance of 0.5 m, 1 m, and 1.5 m to check their survivability after 20-minute exposure. RESULTS AND CONCLUSIONS: Both tested UV-C sources were effective in inactivation of microorganisms; however, LED emitter was more efficient in this respect than the mercury lamp. The survival rate of microorganisms depended on the UV-C dose, conditioned by the distance from UV-C source being the highest at 0.5 m and the lowest at 1.5 m. For the tested microorganisms, the highest survival rate after UV-C irradiation was usually visible on glass and plastic surfaces. This observation should be considered in all environments where the type of material (from which the elements of technical equipment are manufactured and may be contaminated by specific activities) is important for maintaining the proper level of hygiene and avoiding the unwanted and uncontrolled spread of microbiological pollution.


Asunto(s)
Bacterias , Desinfección , Hongos , Rayos Ultravioleta , Desinfección/métodos , Desinfección/instrumentación , Hongos/efectos de la radiación , Bacterias/efectos de la radiación , Bacterias/aislamiento & purificación , Virus/efectos de la radiación , Propiedades de Superficie , Viabilidad Microbiana/efectos de la radiación , Plásticos/efectos de la radiación , Plásticos/química , Vidrio/química
9.
J Agric Food Chem ; 72(21): 12198-12208, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752986

RESUMEN

Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.


Asunto(s)
Bacterias , Leche Humana , Pasteurización , Rayos Ultravioleta , Humanos , Leche Humana/química , Leche Humana/efectos de la radiación , Pasteurización/métodos , Bacterias/efectos de la radiación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Proteínas de la Leche/química , Irradiación de Alimentos/métodos , Lípidos/química , Vitaminas/análisis , Vitamina E/farmacología
10.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38702847

RESUMEN

Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment-associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by (1) higher compared to lower migration velocities, and by (2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift toward heterotrophy.


Asunto(s)
Sedimentos Geológicos , Luz , Sedimentos Geológicos/microbiología , Bacterias/efectos de la radiación , Bacterias/crecimiento & desarrollo , Bacterias/genética , Microbiota , Ríos/microbiología , Estrés Mecánico , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de la radiación
11.
Arch Microbiol ; 206(6): 276, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777923

RESUMEN

Due to its increased safety over ultraviolet light, there is interest in the development of antimicrobial violet-blue light technologies for infection control applications. To ensure compatibility with exposed materials and tissue, the light irradiances and dose regimes used must be suitable for the target application. This study investigates the antimicrobial dose responses and germicidal efficiency of 405 nm violet-blue light when applied at a range of irradiance levels, for inactivation of surface-seeded and suspended bacteria. Bacteria were seeded onto agar surfaces (101-108 CFUplate-1) or suspended in PBS (103-109 CFUmL-1) and exposed to increasing doses of 405-nm light (≤ 288 Jcm-2) using various irradiances (0.5-150 mWcm-2), with susceptibility at equivalent light doses compared. Bacterial reductions ≥ 96% were demonstrated in all cases for lower irradiance (≤ 5 mWcm-2) exposures. Comparisons indicated, on a per unit dose basis, that significantly lower doses were required for significant reductions of all species when exposed at lower irradiances: 3-30 Jcm-2/0.5 mWcm-2 compared to 9-75 Jcm-2/50 mWcm-2 for low cell density (102 CFUplate-1) surface exposures and 22.5 Jcm-2/5 mWcm-2 compared to 67.5 Jcm-2/150 mWcm-2 for low density (103 CFUmL-1) liquid exposures (P ≤ 0.05). Similar patterns were observed at higher densities, excluding S. aureus exposed at 109 CFUmL-1, suggesting bacterial density at predictable levels has minimal influence on decontamination efficacy. This study provides fundamental evidence of the greater energy efficacy of 405-nm light for inactivation of clinically-significant pathogens when lower irradiances are employed, further supporting its relevance for practical decontamination applications.


Asunto(s)
Descontaminación , Luz , Descontaminación/métodos , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos , Desinfección/métodos , Viabilidad Microbiana/efectos de la radiación , Staphylococcus aureus/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos
13.
J Sci Food Agric ; 104(12): 7713-7721, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38591367

RESUMEN

BACKGROUND: Goat milk is considered a nutritionally superior resource, owing to its advantageous nutritional attributes. Nevertheless, it is susceptible to spoilage and the persistence of pathogens. Electron beam irradiation stands as a promising non-thermal processing technique capable of prolonging shelf life with minimal residue and a high degree of automation. RESULTS: The effects of electron beam irradiation (2, 3, 5, and 7 kGy) on microorganisms, physicochemical properties, and protein structure of goat milk compared with conventional pasteurized goat milk (PGM) was evaluated. It was found that a 2 kGy electron beam irradiation reduces the total microbial count of goat milk by 6-logs, and the irradiated goat milk protein secondary structure showed a significant decrease in ɑ-helix content. Low irradiation doses led to microaggregation and crosslinking. In contrast, high doses (≥ 5 kGy) slightly disrupted the aggregates and decreased the particle size, disrupting the microscopic surface structure of goat milk, verified by scanning electron microscopy and confocal laser scanning microscopy. CONCLUSION: The irradiation of goat milk with a 2 kGy electron beam may effectively inactivate harmful microorganisms in the milk and maintain/or improve the physicochemical quality and protein structure of goat milk compared to thermal pasteurization. © 2024 Society of Chemical Industry.


Asunto(s)
Electrones , Irradiación de Alimentos , Cabras , Leche , Animales , Leche/microbiología , Leche/química , Leche/efectos de la radiación , Irradiación de Alimentos/métodos , Proteínas de la Leche/química , Bacterias/efectos de la radiación , Pasteurización/métodos , Microbiología de Alimentos
14.
Am J Infect Control ; 52(8): 915-918, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657905

RESUMEN

BACKGROUND: The standard of care for disinfecting needleless connectors (NCs) of central venous catheters includes alcohol-containing caps or up to a 15-second scrub with alcohol or chlorhexidine. Due to the clinical impact and high cost of treating Central line-associated bloodstream infections (CLABSI), reducing the incidence of CLABSI is a priority for public health and of the Centers for Disease Control. Alcohol-containing caps have been demonstrated to disinfect external NC surfaces, but not the internal surface. Ultraviolet light (UV-C) is a strategy for disinfection of NC internal and external surfaces. METHODS: Four clinically relevant bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and Candida albicans were inoculated on NCs. Disinfection efficacy was measured after exposure to one second of 285 nm UV-C light at 48 mW/cm2 in a proprietary handheld device and UV-C transparent NC or standard of care. Disinfection of internal and external surfaces of NC inoculated with S aureus using alcohol caps, and UV-C was also compared. RESULTS: A 4-log reduction in colony forming units (CFUs) on the interior and exterior surfaces of the UV-transparent NC of clinically relevant pathogens was observed with UV-C light at this power for 1 second. DISCUSSION: We demonstrated the efficacy of UV-C for the disinfection of NCs in one second using the UV-C device in benchtop studies. CONCLUSIONS: This device holds promise for reducing CLABSI, and clinical studies are planned.


Asunto(s)
Desinfección , Rayos Ultravioleta , Desinfección/métodos , Desinfección/instrumentación , Humanos , Bacterias/efectos de la radiación , Catéteres Venosos Centrales/microbiología , Recuento de Colonia Microbiana , Infecciones Relacionadas con Catéteres/prevención & control , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación
15.
J Hazard Mater ; 470: 134166, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554511

RESUMEN

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Asunto(s)
Antibacterianos , Ácido Peracético , Rayos Ultravioleta , Aguas Residuales , Antibacterianos/farmacología , Antibacterianos/química , Ácido Peracético/farmacología , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos/efectos de los fármacos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de la radiación , Desinfección/métodos , Biodegradación Ambiental
16.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542312

RESUMEN

Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome. C57BL/6 mice exposed to whole-body X-rays (0.1-3 Gy) were assessed for histological and microbiome changes 48 h post-radiation exposure. Within the ileum, a dose of 3 Gy significantly decreased crypt depth as well as the number of goblet cells, but increased overall goblet cell size. Overall, radiation altered the microbial distribution within each of the main phyla in a dose- and tissue-dependent manner. Within the Firmicutes phylum, high dose irradiation resulted in significant alterations in bacteria from the class Bacilli within the small bowels, and from the class Clostridia in the large bowels. The 3 Gy radiation also significantly increased the abundance of bacterial families from the Bacteroidetes phylum in the colon and feces. Overall, we identified various alterations in microbiome composition following acute radiation exposure, which could potentially lead to novel biomarkers for tracking patient toxicities or could be used as targets for mitigation strategies against radiation damage.


Asunto(s)
Microbioma Gastrointestinal , Exposición a la Radiación , Traumatismos por Radiación , Humanos , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Ratones Endogámicos C57BL , Tracto Gastrointestinal/microbiología , Bacterias/efectos de la radiación , Firmicutes , Rayos X
17.
Microbes Infect ; 26(4): 105320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461969

RESUMEN

INTRODUCTION: Healthcare-acquired infections and overuse of antibiotics are a common problem. Rising emergence of antibiotic and antiseptic resistances requires new methods of microbial decontamination or decolonization as the use of far-UV-C radiation. METHODS: The microbicidal efficacy of UV-C radiation (222 nm, 233 nm, 254 nm) was determined in a quantitative carrier test and on 3D-epidermis models against Staphylococcus (S.) aureus, S.epidermidis, S.haemolyticus, S.lugdunensis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To mimic realistic conditions, sodium chloride solution, mucin, albumin, artificial saliva, artificial wound exudate and artificial sweat were used. RESULTS: In sodium chloride solution, irradiation with a dose of 40 mJ/cm2 (233 nm) was sufficient to achieve 5 lg reduction independent of bacteria genus or species. In artificial sweat, albumin and artificial wound exudate, a reduction >3 lg was reached for most of the bacteria. Mucin and artificial saliva decreased the reduction to <2 lg. On 3D epidermis models, reduction was lower than in the carrier test. CONCLUSION: UV-C radiation at 233 nm was proven to be efficient in bacteria inactivation independent of genus or species thus being a promising candidate for clinical use in the presence of humans and on skin/mucosa.


Asunto(s)
Rayos Ultravioleta , Humanos , Bacterias/efectos de la radiación , Bacterias/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Células Epidérmicas/efectos de la radiación , Epidermis/efectos de la radiación , Epidermis/microbiología
18.
Braz J Microbiol ; 55(2): 1139-1150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378880

RESUMEN

In recent years, some microorganisms have shown resistance to conventional treatments. Considering this increase in resistant pathogens, treatment alternatives are needed to promote greater treatment efficiency. In this sense, antimicrobial photodynamic therapy (aPDT) has been an alternative treatment. This technique uses a photosensitizer that is activated by light with a specific wavelength producing reactive species, leading to the death of pathogenic microorganisms. In this study, bacteriochlorophyll derivatives such as bacteriochlorin metoxi (Bchl-M) and bacteriochlorin trizma (Bchl-T) obtained from purple bacterium (Rhodopseudomonas faecalis), were evaluated as photosensitizers in the aPDT. Photodynamic inactivation (PDI) of the microorganisms Staphylococcus aureus, Micrococcus luteus, Candida albicans and Pseudomonas aeruginosa was investigated with both bacteriochlorins (Bchl-M and Bchl-T) at different concentrations (1, 15 and 30 µM for S. aureus; 1, 15, 30, 45, 60 and 75 µM for M. luteus; 30, 60, 90, 105, 120 and 150 µM for C. albicans; and 200 µM for P. aeruginosa) and different doses of light (20 and 30 J/cm2 for S. aureus and M. luteus; 30 and 45 J/cm2 for C. albicans; and 45 J/cm2 for P. aeruginosa) to inactivate them. Both photosensitizers showed good activation against S. aureus and for M. luteus, we observed the inactivation of these microorganisms at approximately 3 log, showing to be a good photosensitizers for these microorganisms.


Asunto(s)
Candida albicans , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes , Pseudomonas aeruginosa , Staphylococcus aureus , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Fotoquimioterapia/métodos , Porfirinas/farmacología , Porfirinas/química , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Micrococcus luteus/efectos de los fármacos , Micrococcus luteus/efectos de la radiación , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación
19.
Ultrasonics ; 138: 107234, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171227

RESUMEN

The development of alternative techniques to efficiently inactivate bacterial suspensions is crucial to prevent transmission of waterborne illness, particularly when commonly used techniques such as heating, filtration, chlorination, or ultraviolet treatment are not practical or feasible. We examine the effect of MHz-order acoustic wave irradiation in the form of surface acoustic waves (SAWs) on Gram-positive (Escherichia coli) and Gram-negative (Brevibacillus borstelensis and Staphylococcus aureus) bacteria suspended in water droplets. A significant increase in the relative bacterial load reduction of colony-forming units (up to 74%) can be achieved by either increasing (1) the excitation power, or, (2) the acoustic treatment duration, which we attributed to the effect of the acoustic radiation force exerted on the bacteria. Consequently, by increasing the maximum pressure amplitude via a hybrid modulation scheme involving a combination of amplitude and pulse-width modulation, we observe that the bacterial inactivation efficiency can be further increased by approximately 14%. By combining this scalable acoustic-based bacterial inactivation platform with plasma-activated water, a 100% reduction in E. coli is observed in less than 10 mins, therefore demonstrating the potential of the synergistic effects of MHz-order acoustic irradiation and plasma-activated water as an efficient strategy for water decontamination.


Asunto(s)
Bacterias , Escherichia coli , Bacterias/efectos de la radiación , Sonido , Acústica , Agua
20.
PLoS One ; 18(11): e0294427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015931

RESUMEN

Ultraviolet light (UV) acts as a powerful disinfectant and can prevent contamination of personal hygiene from various contaminated environments. The 222-nm wavelength of UV-C has a highly effective sterilization activity and is safer than 275-nm UV-C. We investigated the irradiation efficacy of 222-nm UV-C against contaminating bacteria and viruses in liquid and fabric environments. We conducted colony-forming unit assays to determine the number of viable cells and a 50% tissue culture infectious dose assay to evaluate the virus titration. A minimum dose of 27 mJ/cm2 of 222-nm UV-C was required for >95% germicidal activity for gram-negative and -positive bacteria. A 25.1 mJ/cm2 dose could ensure >95% virucidal activity against low-pathogenic avian influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV-2). In addition, this energy dose of 222-nm UV-C effectively inactivated SARS-CoV-2 variants, Delta and Omicron. These results provide valuable information on the disinfection efficiency of 222-nm UV-C in bacterial and virus-contaminated environments and can also develop into a powerful tool for individual hygiene.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Virus , Humanos , SARS-CoV-2 , Rayos Ultravioleta , COVID-19/prevención & control , Virus/efectos de la radiación , Bacterias/efectos de la radiación , Desinfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...