Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 952
Filtrar
1.
J Physiol Pharmacol ; 75(3)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39042390

RESUMEN

Globally, the metabolic dysfunction-associated fatty liver disease (MAFLD) holds the position as the most widespread chronic liver condition. Berberine (BBR) shows promise as a natural compound for managing obesity, hepatic steatosis, and metabolic disorders. The study aimed to investigate the effectiveness of BBR in addressing factors linked to MAFLD. This is a randomized, double-blind, and placebo-controlled clinical trial. Seventy individuals with MAFLD were enrolled in this study and randomly assigned in a 1:1 ratio to two groups. BBR (1500 mg/day) or placebo was administrated orally for 12 weeks. Selected anthropometric, hepatic, and metabolic parameters were assessed. After a 12-week intervention, the BBR group demonstrated a statistically significant decrease in alanine transaminase (ALT) p=0.0105, and de Ritis ratio p=0.0011 compared to the control group. In both groups we observed a decrease in trunk fat (kg) - BBR group p=0.0185, and placebo group p=0.0323. After three months, a significant divergence between the BBR and placebo groups was evident in the alteration of Δ total cholesterol (TC) p=0.0009, favoring the BBR group. Nevertheless, there were no significant differences detected in other lipid and glucose parameters. In the BBR group, we found significant correlations between changes and amelioration of certain variables: Δ body mass index (BMI) correlated with ΔALT (r=0.47; p=0.0089) and D aspartate aminotransferase (AST) (r=0.47; p=0.0081) levels; Δ trunk fat with Δ fatty liver index (FLI) (r=0.55; p=0.0337), Δ homeostasis model assessment for insulin resistant index (HOMA-IR) (r=0.37; p=0.0020), and AST (r=0.42; p=0.0202); D the de Ritis ratio correlated with Δ fibrosis-4 index (FIB-4) levels (r=0.59; p=0.0011); and ΔFLI correlated with ΔHOMA-IR (r=0.37; p=0.0409) and Δ visceral adiposity index (VAI) (r=0.54; p=0.0019), while no significant differences were observed in the Placebo group. The results show that BBR appears to be a bioactive compound that positively impacts MAFLD, however, additional research with extended intervention durations is required to fully assess its efficacy and potential clinical use.


Asunto(s)
Berberina , Hígado , Humanos , Berberina/uso terapéutico , Berberina/farmacología , Método Doble Ciego , Masculino , Femenino , Persona de Mediana Edad , Adulto , Hígado/metabolismo , Hígado/efectos de los fármacos , Alanina Transaminasa/sangre , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Antropometría
2.
Gen Physiol Biophys ; 43(4): 353-366, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953577

RESUMEN

This study aimed to assess the prophylactic effects of Berberine on experimentally induced lung sepsis and examine its effects on selected cytokines, genes, and protein expression besides the histopathological evaluation. Berberine significantly reduced the wet/dry lung ratio, the broncho-alveolar lavage fluid (BALF) protein, cells, neutrophils percentage, and cytokines levels. In addition, pretreatment with Berberine decreased the myeloperoxidase (MPO) and malondialdehyde (MDA) levels and decreased gene expression of nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and the intracellular adhesion molecule 1 (ICAM-1) by RT-qPCR analysis, revealing Berberine's antioxidant and anti-inflammatory mode of action. Western blot analysis revealed increased peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in the Berberine pretreated group compared to the cecal ligation and puncture (CLP) group, in which the histopathological examination evidenced this improvement. In conclusion, Berberine improved lung sepsis via its PPAR-γ mediated antioxidant and anti-inflammatory effects.


Asunto(s)
Lesión Pulmonar Aguda , Berberina , PPAR gamma , Sepsis , Transducción de Señal , Berberina/farmacología , Berberina/uso terapéutico , Animales , PPAR gamma/metabolismo , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Ratas , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Masculino , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ratas Wistar , Ratas Sprague-Dawley
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892414

RESUMEN

Berberine (BBR) is used to treat cancer, inflammatory conditions, and so on. But the side effects of BBR causing constipation should not be ignored. In clinical application, the combination of Amomum villosum Lour. (AVL) and BBR can relieve it. However, the effective ingredients and molecular mechanism of AVL in relieving constipation are not clear. A small intestine propulsion experiment was conducted in constipated mice to screen active ingredients of AVL. We further confirmed the molecular mechanism of action of the active ingredient on BBR-induced constipation. Quercetin (QR) was found to be the effective ingredient of AVL in terms of relieving constipation. QR can efficiently regulate the microbiota in mice suffering from constipation. Moreover, QR significantly raised the levels of substance P and motilin while lowering those of 5-hydroxytryptamine and vasoactive intestinal peptide; furthermore, it also increased the protein expression levels of calmodulin, myosin light-chain kinase, and myosin light chain. The use of QR in combination with BBR has an adverse effect-reducing efficacy. The study provides new ideas and possibilities for the treatment of constipation induced by BBR.


Asunto(s)
Berberina , Estreñimiento , Microbioma Gastrointestinal , Quercetina , Animales , Berberina/farmacología , Berberina/uso terapéutico , Quercetina/farmacología , Estreñimiento/tratamiento farmacológico , Estreñimiento/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Modelos Animales de Enfermedad , Motilina/metabolismo
4.
J Cell Mol Med ; 28(12): e18407, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38894630

RESUMEN

Chronic intermittent hypoxia (CIH) is associated with an increased risk of cardiovascular diseases. Previously, we have shown that berberine (BBR) is a potential cardioprotective agent. However, its effect and mechanism on CIH-induced cardiomyopathy remain uncovered. This study was designed to determine the effects of BBR against CIH-induced cardiac damage and to explore the molecular mechanisms. Mice were exposed to 5 weeks of CIH with or without the treatment of BBR and adeno-associated virus 9 (AAV9) carrying SIRT6 or SIRT6-specific short hairpin RNA. The effect of BBR was evaluated by echocardiography, histological analysis and western blot analysis. CIH caused the inactivation of myocardial SIRT6 and AMPK-FOXO3a signalling. BBR dose-dependently ameliorated cardiac injury in CIH-induced mice, as evidenced by increased cardiac function and decreased fibrosis. Notably, SIRT6 overexpression mimicked these beneficial effects, whereas infection with recombinant AAV9 carrying SIRT6-specific short hairpin RNA abrogated them. Mechanistically, BBR reduced oxidative stress damage and preserved mitochondrial function via activating SIRT6-AMPK-FOXO3a signalling, enhancing mitochondrial biogenesis as well as PINK1-Parkin-mediated mitophagy. Taken together, these data demonstrate that SIRT6 activation protects against the pathogenesis of CIH-induced cardiac dysfunction. BBR attenuates CIH-induced myocardial injury by improving mitochondrial biogenesis and PINK1-Parkin-dependent mitophagy via the SIRT6-AMPK-FOXO3a signalling pathway.


Asunto(s)
Berberina , Proteína Forkhead Box O3 , Hipoxia , Transducción de Señal , Sirtuinas , Berberina/farmacología , Berberina/uso terapéutico , Animales , Sirtuinas/metabolismo , Sirtuinas/genética , Transducción de Señal/efectos de los fármacos , Hipoxia/metabolismo , Ratones , Masculino , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Modelos Animales de Enfermedad
5.
Int Immunopharmacol ; 137: 112422, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38880024

RESUMEN

The rising prevalence of autoimmune diseases poses a significant challenge to global public health. Continual exploration of natural compounds for effective treatments for autoimmune diseases is crucial. Berberine, a benzylisoquinoline alkaloid, is a bioactive component found in various medicinal plants, exhibiting diverse pharmacological properties. This review aims to consolidate the current understanding of berberine's pharmacological effects and mechanisms in addressing four autoimmune diseases: rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and psoriasis. Overall, as a traditional Chinese medicinal preparation, berberine shows promise as an effective and safe treatment for autoimmune diseases. However, further comprehensive studies, particularly clinical trials, are essential to elucidate additional mechanisms and molecular targets, as well as to assess the efficacy and safety of berberine in treating these autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Berberina , Humanos , Berberina/uso terapéutico , Berberina/farmacología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico
6.
Sci Rep ; 14(1): 14924, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942824

RESUMEN

Oxyberberine (OBB) is a significant natural compound, with excellent hepatoprotective properties. However, the poor water solubility of OBB hinders its release and absorption thus resulting in low bioavailability. To overcome these drawbacks of OBB, amorphous spray-dried powders (ASDs) of OBB were formulated. The dissolution, characterizations, and pharmacokinetics of OBB-ASDs formulation were investigated, and its hepatoprotective action was disquisitive in the D-GalN/LPS-induced acute liver injury (ALI) mouse model. The characterizations of OBB-ASDs indicated that the crystalline form of OBB active pharmaceutical ingredients (API) was changed into an amorphous form in OBB-ASDs. More importantly, OBB-ASDs showed a higher bioavailability than OBB API. In addition, OBB-ASDs treatment restored abnormal histopathological changes, improved liver functions, and relieved hepatic inflammatory mediators and oxidative stress in ALI mice. The spray drying techniques produced an amorphous form of OBB, which could significantly enhance the bioavailability and exhibit excellent hepatoprotective effects, indicating that the OBB-ASDs can exhibit further potential in hepatoprotective drug delivery systems. Our results provide guidance for improving the bioavailability and pharmacological activities of other compounds, especially insoluble natural compounds. Meanwhile, the successful development of OBB-ASDs could shed new light on the research process of poorly soluble medicine.


Asunto(s)
Berberina , Disponibilidad Biológica , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Ratones , Berberina/farmacología , Berberina/química , Berberina/uso terapéutico , Masculino , Solubilidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Lipopolisacáridos , Polvos , Sistemas de Liberación de Medicamentos
7.
ACS Biomater Sci Eng ; 10(7): 4347-4358, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38841860

RESUMEN

In order to improve the effectiveness of tumor treatment and reduce the toxic side effects of drugs, we formed carrier-free multifunctional nanoparticles (BI NPs) by noncovalent interaction of berberine hydrochloride and IR780. BI NPs possessed the synergistic effects of promoting apoptosis, inhibiting proliferation and metastasis of tumors, and phototherapeutic treatment. Dispersive and passive targeting ability retention (EPR) effects of BI NPs on tumor sites in vivo could be monitored by fluorescence imaging. In addition, BI NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion capabilities, photodynamic therapy (PDT), and photothermal therapy (PTT). Importantly, BI NPs inhibit tumor suppression through the AMPK/PI3K/AKT signaling pathway to inhibit tumor proliferation and metastasis. BI NPs not only have efficient in vivo multimodal therapeutic effects but also have good biosafety and potential clinical applications.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Nanomedicina , Nanopartículas , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Humanos , Proliferación Celular/efectos de los fármacos , Animales , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanomedicina/métodos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Berberina/farmacología , Berberina/química , Berberina/uso terapéutico , Terapia Fototérmica , Ratones Endogámicos BALB C , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico
8.
Comput Biol Med ; 178: 108804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941899

RESUMEN

Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.


Asunto(s)
Coptis , Medicamentos Herbarios Chinos , Gastritis Atrófica , Simulación de Dinámica Molecular , Farmacología en Red , Humanos , Coptis/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Berberina/química , Berberina/uso terapéutico , Berberina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
9.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704553

RESUMEN

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Asunto(s)
Berberina , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Periodontitis , Humanos , Periodontitis/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Berberina/farmacología , Berberina/uso terapéutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transducción de Señal/efectos de los fármacos , Técnicas In Vitro , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo
10.
Adv Biol Regul ; 92: 101032, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38693042

RESUMEN

Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.


Asunto(s)
Berberina , Carcinoma Hepatocelular , Suplementos Dietéticos , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Berberina/uso terapéutico , Berberina/farmacología , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Animales
11.
Diabet Med ; 41(7): e15319, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38711201

RESUMEN

INTRODUCTION: Berberine (BBR) is an alkaloid found in plants. It has neuroprotective, anti-inflammatory and lipid-lowering activity. However, the efficacy of treatment with BBR and the mechanisms through which it acts need further study. AIMS: This study investigated the therapeutic effects and the mechanism of action of BBR on obesity-induced insulin resistance in peripheral tissues. METHODS: High-fat-fed C57BL/6J mice and low-fat-fed C57BL/6J mice with miR-27a overexpression were given BBR intervention (100 mg/kg, po), and the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed. Palmitic acid-stimulated hypertrophic adipocyte models were treated with BBR (10 µM). Related indicators and protein expression levels were examined. RESULTS: The AUCs of the OGTT and the ITT in the BBR intervention group were reduced significantly (p < 0.01) (p < 0.05), and the serum biochemical parameters, including FBG, TC, TG and LDL-C were significantly reduced after BBR intervention. In the in vitro experiments, the triglyceride level and volume of lipid droplets decreased significantly after BBR intervention (p < 0.01) (p < 0.05). Likewise, BBR ameliorates skeletal muscle and pancreas insulin signalling pathways in vivo and in vitro. DISCUSSION: The results showed that BBR significantly ameliorated insulin resistance, reduced body weight and percent body fat and improved serum biochemical parameters in mice. Likewise, BBR reduced triglyceride level and lipid droplet volume in hypertrophic adipocytes, BBR improved obesity effectively. Meanwhile, BBR ameliorated the histomorphology of the pancreas, and skeletal muscle and pancreas insulin related signalling pathways of islets in in vitro and in vivo experiments. The results further demonstrated that BBR inhibited miR-27a levels in serum from obese mice and supernatant of hypertrophic adipocytes. miR-27a overexpression in low-fat fed mice indicated that miR-27a caused insulin resistance, and BBR intervention significantly improved the miR-27a induced insulin resistance status. CONCLUSION: This study demonstrates the important role of BBR in obesity-induced peripheral insulin resistance and suggest that the mechanism of its effect may be inhibition of miR-27a secretion.


Asunto(s)
Berberina , Resistencia a la Insulina , Ratones Endogámicos C57BL , MicroARNs , Obesidad , Berberina/farmacología , Berberina/uso terapéutico , Animales , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Ratones , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Dieta Alta en Grasa , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Prueba de Tolerancia a la Glucosa
12.
J Ethnopharmacol ; 332: 118354, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762210

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY: To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS: High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS: BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS: BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.


Asunto(s)
Aldo-Ceto Reductasas , Berberina , Dieta Alta en Grasa , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Células Hep G2 , Masculino , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Glucosa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Resistencia a la Insulina
13.
Bone ; 185: 117114, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723878

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) may contribute to osteoporosis. Berberine is a traditional Chinese medicine and was recently shown to be beneficial in NAFLD. However, little is known about its impact on bone loss induced by NAFLD. AIM: We aimed to explore the role of berberine in bone loss and determine its underlying mechanisms in NAFLD. METHODS: C57BL/6 mice were fed a high-fat high-fructose high-glucose diet (HFFGD) for 16 weeks to establish a NAFLD mouse model. The mice were administered berberine (300 mg/kg/d) by gavage, and fatty liver levels and bone loss indicators were tested. RESULTS: Berberine significantly improved HFFGD-induced weight gain, hepatic lipid accumulation and increases in serum liver enzymes, thereby alleviating NAFLD. Berberine increased trabecular number (Tb. N), trabecular thickness (Tb. Th), bone volume to tissue volume ratio (BV/TV), and decreased trabecular separation (Tb. Sp) and restored bone loss in NAFLD. Mechanistically, berberine significantly inhibited ferroptosis and 4-hydroxynonenal (4-HNE), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin (TF) levels and increased ferritin heavy chain (FTH) levels in the femurs of HFFGD-fed mice. Moreover, berberine also activated the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling pathway. CONCLUSION: Berberine significantly ameliorates bone loss induced by NAFLD by activating the SLC7A11/GSH/GPX4 signaling pathway and inhibiting ferroptosis. Therefore, berberine may serve as a therapeutic agent for NAFLD-induced bone loss.


Asunto(s)
Berberina , Ferroptosis , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Berberina/farmacología , Berberina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Modelos Animales de Enfermedad , Osteoporosis/tratamiento farmacológico , Osteoporosis/patología
14.
Int Immunopharmacol ; 136: 112278, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815353

RESUMEN

Intestinal stem cells (ISCs) are pivotal for the maintenance and regeneration of the intestinal epithelium. Berberine (BBR) exhibits diverse biological activities, but it remains unclear whether BBR can modulate ISCs' function. Therefore, we investigated the effects of BBR on ISCs in healthy and radiation-injured mice and explored the potential underlying mechanisms involved. The results showed that BBR significantly increased the length of the small intestines, the height of the villi, and the depth and density of the crypts, promoted the proliferation of cryptal epithelial cells and increased the number of OLFM4+ ISCs and goblet cells. Crypts from the BBR-treated mice were more capable of growing into enteroids than those from untreated mice. BBR alleviated WAI-induced intestinal injury. BBR suppressed the apoptosis of crypt epithelial cells, increased the quantity of goblet cells, and increased the quantity of OLFM4+ ISCs and tdTomato+ progenies of ISCs after 8 Gy WAI-induced injury. Mechanistically, BBR treatment caused a significant increase in the quantity of p-S6, p-STAT3 and p-ERK1/2 positive cryptal epithelial cells under physiological conditions and after WAI-induced injury. In conclusion, BBR is capable of enhancing the function of ISCs either physiologically or after radiation-induced injury, indicating that BBR has potential value in the treatment of radiation-induced intestinal injury.


Asunto(s)
Berberina , Mucosa Intestinal , Ratones Endogámicos C57BL , Células Madre , Animales , Berberina/farmacología , Berberina/uso terapéutico , Células Madre/efectos de los fármacos , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Masculino , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/patología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/efectos de la radiación , Células Caliciformes/patología , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/patología , Factor de Transcripción STAT3/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/efectos de la radiación , Intestino Delgado/patología , Intestino Delgado/lesiones , Intestinos/efectos de los fármacos , Intestinos/efectos de la radiación
15.
Cell Biochem Funct ; 42(4): e4033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38742849

RESUMEN

Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.


Asunto(s)
Berberina , Neoplasias Colorrectales , Berberina/farmacología , Berberina/uso terapéutico , Humanos , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
16.
Metab Brain Dis ; 39(5): 649-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727934

RESUMEN

Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.


Asunto(s)
Envejecimiento , Berberina , Encéfalo , Galactosa , Oxidación-Reducción , Estrés Oxidativo , Ratas Wistar , Animales , Berberina/farmacología , Berberina/uso terapéutico , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ratas , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Galactosa/toxicidad , Estrés Oxidativo/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Homeostasis/efectos de los fármacos , Antioxidantes/farmacología
17.
Metab Brain Dis ; 39(5): 941-952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801506

RESUMEN

Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3ß at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3ß pathway.


Asunto(s)
Atrofia , Berberina , Encéfalo , Disfunción Cognitiva , Imagen por Resonancia Magnética , Sustancia Blanca , Animales , Berberina/farmacología , Berberina/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/diagnóstico por imagen , Atrofia/tratamiento farmacológico , Ratones , Masculino , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Imagen de Difusión Tensora , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo
18.
Am J Chin Med ; 52(3): 753-773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716621

RESUMEN

The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.


Asunto(s)
Berberina , Fibrosis , Transducción de Señal , Berberina/farmacología , Berberina/uso terapéutico , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Fitoterapia , Animales , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología
19.
Sci Rep ; 14(1): 11999, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796469

RESUMEN

Allergic rhinitis is a prevalent inflammatory condition that impacts individuals of all age groups. Despite reports indicating the potential of berberine in alleviating allergic rhinitis symptoms, the specific molecular mechanisms and therapeutic targets of berberine remain unclear. This research aims to explore the pharmacological mechanism of berberine in the treatment of allergic rhinitis through bioinformatic analyses and experimental validation. The research utilized public databases to identify potential targets of berberine. Furthermore, differentially expressed genes (DEGs) related to allergic rhinitis were pinpointed from the GSE52804 dataset. Through bioinformatics techniques, the primary targets were discovered and key KEGG and GO-BP pathways were established. To confirm the therapeutic mechanisms of berberine on allergic rhinitis, an OVA-induced allergic rhinitis model was developed using guinea pigs. We identified 32 key genes responsible for the effectiveness of berberine in treating allergic rhinitis. In addition, five central genes (Alb, Il6, Tlr4, Ptas2, and Il1b) were pinpointed. Further examination using KEGG and GO-BP pathways revealed that the main targets were primarily involved in pathways such as NF-kappa B, IL-17, TNF, and inflammatory response. Molecular docking analysis demonstrated that berberine exhibited strong affinity towards these five key targets. Furthermore, the expression levels of IL-6, TLR4, PTGS2, and IL-1ß were significantly upregulated in the model group but downregulated following berberine treatment. This research has revealed the mechanism through which berberine combats allergic rhinitis and has identified its potential to regulate pathways linked to inflammation. These discoveries provide valuable insights for the development of novel medications for the treatment of allergic rhinitis.


Asunto(s)
Berberina , Biología Computacional , Simulación del Acoplamiento Molecular , Rinitis Alérgica , Berberina/farmacología , Berberina/uso terapéutico , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/genética , Rinitis Alérgica/metabolismo , Animales , Cobayas , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Masculino , Ovalbúmina
20.
Immunol Lett ; 267: 106862, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702033

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Asunto(s)
Berberina , Diabetes Mellitus Experimental , Retinopatía Diabética , Linfocitos T Reguladores , Células Th17 , Animales , Berberina/farmacología , Berberina/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/inmunología , Retinopatía Diabética/etiología , Células Th17/inmunología , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Ratones , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inmunología , Masculino , Citocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Retina/patología , Retina/inmunología , Retina/efectos de los fármacos , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...