Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.901
Filtrar
1.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958241

RESUMEN

Objectives. Anti-fungal agents are increasingly becoming less effective due to the development of resistance. In addition, it is difficult to treat Candida organisms that form biofilms due to a lack of ability of drugs to penetrate the biofilms. We are attempting to assess the effect of a new therapeutic agent, N-acetylcysteine (NAC), on adhesion and biofilm formation in Candida parapsilosis clinical strains. Meanwhile, to detect the transcription level changes of adhesion and biofilm formation-associated genes (CpALS6, CpALS7, CpEFG1 and CpBCR1) when administrated with NAC in C. parapsilosis strains, furthermore, to explore the mechanism of drug interference on biofilms.Hypothesis/Gap statement. N-acetylcysteine (NAC) exhibits certain inhibitory effects on adhesion and biofilm formation in C. parapsilosis clinical strains from CRBSIs through: (1) down-regulating the expression of the CpEFG1 gene, making it a highly potential candidate for the treatment of C. parapsilosis catheter-related bloodstream infections (CRBSIs), (2) regulating the metabolism and biofilm -forming factors of cell structure.Methods. To determine whether non-antifungal agents can exhibit inhibitory effects on adhesion, amounts of total biofilm formation and metabolic activities of C. parapsilosis isolates from candidemia patients, NAC was added to the yeast suspensions at different concentrations, respectively. Reverse transcription was used to detect the transcriptional levels of adhesion-related genes (CpALS6 and CpALS7) and biofilm formation-related factors (CpEFG1 and CpBCR1) in the BCR1 knockout strain, CP7 and CP5 clinical strains in the presence of NAC. To further explore the mechanism of NAC on the biofilms of C. parapsilosis, RNA sequencing was used to calculate gene expression, comparing the differences among samples. Gene Ontology (GO) enrichment analysis helps to illustrate the difference between two particular samples on functional levels.Results. A high concentration of NAC reduces the total amount of biofilm formation in C. parapsilosis. Following co-incubation with NAC, the expression of CpEFG1 in both CP7 and CP5 clinical strains decreased, while there were no significant changes in the transcriptional levels of CpBCR1 compared with the untreated strain. GO enrichment analysis showed that the metabolism and biofilm-forming factors of cell structure were all regulated after NAC intervention.Conclusions. The non-antifungal agent NAC exhibits certain inhibitory effects on clinical isolate biofilm formation by down-regulating the expression of the CpEFG1 gene, making it a highly potential candidate for the treatment of C. parapsilosis catheter-related bloodstream infections.


Asunto(s)
Acetilcisteína , Biopelículas , Candida parapsilosis , Candidemia , Infecciones Relacionadas con Catéteres , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Acetilcisteína/farmacología , Humanos , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Candida parapsilosis/fisiología , Infecciones Relacionadas con Catéteres/microbiología , Candidemia/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacología
2.
PeerJ ; 12: e17650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952965

RESUMEN

Background: This study explored the utilization of luffa sponge (LS) in enhancing acetification processes. LS is known for having high porosity and specific surface area, and can provide a novel means of supporting the growth of acetic acid bacteria (AAB) to improve biomass yield and acetification rate, and thereby promote more efficient and sustainable vinegar production. Moreover, the promising potential of LS and luffa sponge coated with κ-carrageenan (LSK) means they may represent effective alternatives for the co-production of industrially valuable bioproducts, for example bacterial cellulose (BC) and acetic acid. Methods: LS and LSK were employed as adsorbents for Acetobacter pasteurianus UMCC 2951 in a submerged semi-continuous acetification process. Experiments were conducted under reciprocal shaking at 1 Hz and a temperature of 32 °C. The performance of the two systems (LS-AAB and LSK-AAB respectively) was evaluated based on cell dry weight (CDW), acetification rate, and BC biofilm formation. Results: The use of LS significantly increased the biomass yield during acetification, achieving a CDW of 3.34 mg/L versus the 0.91 mg/L obtained with planktonic cells. Coating LS with κ-carrageenan further enhanced yield, with a CDW of 4.45 mg/L. Acetification rates were also higher in the LSK-AAB system, reaching 3.33 ± 0.05 g/L d as opposed to 2.45 ± 0.05 g/L d for LS-AAB and 1.13 ± 0.05 g/L d for planktonic cells. Additionally, BC biofilm formation during the second operational cycle was more pronounced in the LSK-AAB system (37.0 ± 3.0 mg/L, as opposed to 25.0 ± 2.0 mg/L in LS-AAB). Conclusions: This study demonstrates that LS significantly improves the efficiency of the acetification process, particularly when enhanced with κ-carrageenan. The increased biomass yield, accelerated acetification, and enhanced BC biofilm formation highlight the potential of the LS-AAB system, and especially the LSK-AAB variant, in sustainable and effective vinegar production. These systems offer a promising approach for small-scale, semi-continuous acetification processes that aligns with eco-friendly practices and caters to specialized market needs. Finally, this innovative method facilitates the dual production of acetic acid and bacterial cellulose, with potential applications in biotechnological fields.


Asunto(s)
Ácido Acético , Acetobacter , Biomasa , Carragenina , Carragenina/química , Acetobacter/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Luffa/química , Adsorción , Celulosa/metabolismo , Celulosa/química , Biopelículas/crecimiento & desarrollo
3.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947124

RESUMEN

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Asunto(s)
Biopelículas , Infecciones por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/clasificación , Biopelículas/crecimiento & desarrollo , Virulencia/genética , Animales , Infecciones por Klebsiella/microbiología , Larva/microbiología , Plásmidos/genética , Mariposas Nocturnas/microbiología , Humanos , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lepidópteros/microbiología , Viscosidad , Fenotipo , Perfilación de la Expresión Génica
5.
ACS Appl Mater Interfaces ; 16(26): 33038-33052, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961578

RESUMEN

Utilizing nanomaterials as an alternative to antibiotics, with a focus on maintaining high biosafety, has emerged as a promising strategy to combat antibiotic resistance. Nevertheless, the challenge lies in the indiscriminate attack of nanomaterials on both bacterial and mammalian cells, which limits their practicality. Herein, Cu3SbS3 nanoparticles (NPs) capable of generating reactive oxygen species (ROS) are discovered to selectively adsorb and eliminate bacteria without causing obvious harm to mammalian cells, thanks to the interaction between O of N-acetylmuramic acid in bacterial cell walls and Cu of the NPs. Coupled with the short diffusion distance of ROS in the surrounding medium, a selective antibacterial effect is achieved. Additionally, the antibacterial mechanism is then identified: Cu3SbS3 NPs catalyze the generation of O2•-, which has subsequently been conversed by superoxide dismutase to H2O2. The latter is secondary catalyzed by the NPs to form •OH and 1O2, initiating an in situ attack on bacteria. This process depletes bacterial glutathione in conjunction with the disruption of the antioxidant defense system of bacteria. Notably, Cu3SbS3 NPs are demonstrated to efficiently impede biofilm formation; thus, a healing of MRSA-infected wounds was promoted. The bacterial cell wall-binding nanoantibacterial agents can be widely expanded through diversified design.


Asunto(s)
Antibacterianos , Pared Celular , Cobre , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Cobre/química , Cobre/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/química , Pared Celular/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Biopelículas/efectos de los fármacos , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nanopartículas del Metal/química , Humanos , Nanopartículas/química , Pruebas de Sensibilidad Microbiana
6.
Dent Med Probl ; 61(3): 391-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963395

RESUMEN

BACKGROUND: In Mexico and around the world, water in dental units, including triple syringes, comes from municipal chlorinated water mains. The microbial contamination of dental unit water systems constitutes a risk factor for opportunistic infections. OBJECTIVES: The present work aimed to identify the bacteria present in the triple-syringe water lines of dental units at a dental school of a public university in Mexico, with a hypothesis that opportunistic bacteria of importance to human health would be found. MATERIAL AND METHODS: A cross-sectional study was carried-out. A total of 100 samples of triple-syringe tubing from dental units operated by a dental school of a public university in Mexico were analyzed before and after their use in dental practice. Bacterial biofilm was cultured and isolated from the tubing, using standard microbiological methods, and then the species present were identified through 16S rRNA gene sequencing. The characterization of the biofilm was performed by means of scanning electron microscopy (SEM). RESULTS: Bacterial growth was observed in 20% of the non-disinfected and 10% of the disinfected samples, with 11 strains isolated. Six genera and 11 bacterial species were genetically identified. Coagulasenegative staphylococci (CoNS), considered opportunistic human pathogens, were among the most critical microorganisms. Scanning electron microscopy revealed a thick polymeric matrix with multiple bacterial aggregates. CONCLUSIONS: Opportunistic bacteria from human skin and mucous membranes were detected. Under normal conditions, these bacteria are incapable of causing disease, but are potentially harmful to immunosuppressed patients.


Asunto(s)
Biopelículas , Contaminación de Equipos , Jeringas , Microbiología del Agua , Estudios Transversales , México , Humanos , Jeringas/microbiología , Equipo Dental/microbiología , Microscopía Electrónica de Rastreo , Bacterias/aislamiento & purificación , Genotipo , ARN Ribosómico 16S
7.
J Med Microbiol ; 73(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963417

RESUMEN

Background. Pseudomonas aeruginosa is an invasive organism that frequently causes severe tissue damage in diabetic foot ulcers.Gap statement. The characterisation of P. aeruginosa strains isolated from diabetic foot infections has not been carried out in Tunisia.Purpose. The aim was to determine the prevalence of P. aeruginosa isolated from patients with diabetic foot infections (DFIs) in Tunisia and to characterize their resistance, virulence and molecular typing.Methods. Patients with DFIs admitted to the diabetes department of the International Hospital Centre of Tunisia, from September 2019 to April 2021, were included in this prospective study. P. aeruginosa were obtained from the wound swabs, aspiration and soft tissue biopsies during routine clinical care and were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing, serotyping, integron and OprD characterization, virulence, biofilm production, pigment quantification, elastase activity and molecular typing were analysed in all recovered P. aeruginosa isolates by phenotypic tests, specific PCRs, sequencing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.Results. Sixteen P. aeruginosa isolates (16.3 %) were recovered from 98 samples of 78 diabetic patients and were classified into 6 serotypes (O:11 the most frequent), 11 different PFGE patterns and 10 sequence types (three of them new ones). The high-risk clone ST235 was found in two isolates. The highest resistance percentages were observed to netilmicin (69 %) and cefepime (43.8 %). Four multidrug-resistant (MDR) isolates (25 %) were detected, three of them being carbapenem-resistant. The ST235-MDR strain harboured the In51 class 1 integron (intI1 +aadA6+orfD+qacED1-sul1). According to the detection of 14 genes involved in virulence or quorum sensing, 5 virulotypes were observed, including 5 exoU-positive, 9 exoS-positive and 2 exoU/exoS-positive strains. The lasR gene was truncated by ISPpu21 insertion sequence in one isolate, and a deletion of 64 bp in the rhlR gene was detected in the ST235-MDR strain. Low biofilm, pyoverdine and elastase production were detected in all P. aeruginosa; however, the lasR-truncated strain showed a chronic infection phenotype characterized by loss of serotype-specific antigenicity, high production of phenazines and high biofilm formation.Conclusions. Our study demonstrated for the first time the prevalence and the molecular characterization of P. aeruginosa strains from DFIs in Tunisia, showing a high genetic diversity, moderate antimicrobial resistance, but a high number of virulence-related traits, highlighting their pathological importance.


Asunto(s)
Antibacterianos , Pie Diabético , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/patogenicidad , Pie Diabético/microbiología , Túnez/epidemiología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Virulencia/genética , Tipificación de Secuencias Multilocus , Adulto , Factores de Virulencia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Anciano de 80 o más Años , Prevalencia
8.
J Environ Sci (China) ; 146: 55-66, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969462

RESUMEN

The effects of cast iron pipe corrosion on water quality risk and microbial ecology in drinking water distribution systems (DWDSs) were investigated. It was found that trihalomethane (THMs) concentration and antibiotic resistance genes (ARGs) increased sharply in the old DWDSs. Under the same residual chlorine concentration conditions, the adenosine triphosphate concentration in the effluent of old DWDSs (Eff-old) was significantly higher than that in the effluent of new DWDSs. Moreover, stronger bioflocculation ability and weaker hydrophobicity coexisted in the extracellular polymeric substances of Eff-old, meanwhile, iron particles could be well inserted into the structure of the biofilms to enhance the mechanical strength and stability of the biofilms, hence enhancing the formation of THMs. Old DWDSs significantly influenced the microbial community of bulk water and triggered stronger microbial antioxidant systems response, resulting in higher ARGs abundance. Corroded cast iron pipes induced a unique interaction system of biofilms, chlorine, and corrosion products. Therefore, as the age of cast iron pipes increases, the fluctuation of water quality and microbial ecology should be paid more attention to maintain the safety of tap water.


Asunto(s)
Biopelículas , Hierro , Calidad del Agua , Abastecimiento de Agua , Corrosión , Microbiología del Agua , Agua Potable/microbiología , Agua Potable/química , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Trihalometanos/análisis
9.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965339

RESUMEN

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Asunto(s)
Biopelículas , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatógena , Vagina , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Triptaminas/farmacología , Femenino , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/fisiología , Probióticos/farmacología , Vagina/microbiología , Lactobacillus/efectos de los fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/prevención & control , Adulto , Antibacterianos/farmacología
10.
Methods Mol Biol ; 2833: 11-21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949696

RESUMEN

In vitro biofilm models have allowed researchers to investigate the role biofilms play in the pathogenesis, virulence, and antimicrobial drug susceptibility of a wide range of bacterial pathogens. Rotary cell culture systems create three-dimensional cellular structures, primarily applied to eukaryotic organoids, that better capture characteristics of the cells in vivo. Here, we describe how to apply a low-shear, detergent-free rotary cell culture system to generate biofilms of Mycobacterium bovis BCG. The three-dimensional biofilm model forms mycobacterial cell aggregates in suspension as surface-detached biomass, without severe nutrient starvation or environmental stress, that can be harvested for downstream experiments. Mycobacterium bovis BCG derived from cell clusters display antimicrobial drug tolerance, presence of an extracellular matrix, and evidence of cell wall remodeling, all features of biofilm-associated bacteria that may be relevant to the treatment of tuberculosis.


Asunto(s)
Biopelículas , Mycobacterium bovis , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/fisiología , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo Tridimensional de Células/métodos
11.
PLoS One ; 19(7): e0303521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985793

RESUMEN

Microbes maneuver strategies to become incessant and biofilms perfectly play a role in scaling up virulence to cause long-lasting infections. The present study was designed to assess the use of an eco-friendly formulation of functionalized silver nanoparticles generated from Mentha longifolia leaf extract (MℓE) for the treatment of biofilm-producing microbes. Nanoparticles synthesized using MℓE as a reducing agent were optimized at different strengths of AgNO3 (1 mM, 2 mM, 3 mM, and 4 mM). Synthesis of M. longifolia silver nanoparticles (MℓAgNPs) was observed spectrophotometrically (450 nm) showing that MℓAgNPs (4 mM) had the highest absorbance. Various techniques e.g., Fourier transforms Infrared spectroscopy (FTIR), Dynamic light scattering (DLS), zeta potential (ZP), X-ray Diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize MℓAgNPs. In the present study, the Kirby-Bauer method revealed 4mM was the most detrimental conc. of MℓAgNPs with MIC and MBC values of 0.62 µg/mL and 1.25 µg/mL, 0.03 µg/mL and 0.078 µg/mL, and 0.07 µg/mL and 0.15 µg/mL against previously isolated and identified clinical strains of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, respectively. Moreover, the MℓAgNP antibiofilm activity was examined via tissue culture plate (TCP) assay that revealed biofilm inhibition of up to 87.09%, 85.6%, 83.11%, and 75.09% against E. coli, P. aeruginosa, K. pneumonia, and S. aureus, respectively. Herbal synthesized silver nanoparticles (MℓAgNPs) tend to have excellent antibacterial and antibiofilm properties and are promising for other biomedical applications involving the extrication of irksome biofilms. For our best knowledge, it is the first study on the use of the green-synthesized silver nanoparticle MℓAgNP as an antibiofilm agent, suggesting that this material has antibiotic, therapeutic, and industrial applications.


Asunto(s)
Antibacterianos , Biopelículas , Mentha , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Mentha/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Hojas de la Planta/microbiología , Escherichia coli/efectos de los fármacos , Difracción de Rayos X , Nanoestructuras/química
12.
J Infect Dev Ctries ; 18(6): 943-949, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991000

RESUMEN

INTRODUCTION: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. METHODOLOGY: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. RESULTS: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced ß-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, blaTEM, blaCTX-M blaNDM-1 and blaVIM were prevalent in CR-AB with frequencies 91 (94.8%), 68 (70.8%), 19 (19.7%), 53 (55.2%), 2 (2.0%) respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound (83, 86.4%), csuE 63 (80.7%) from non-wound specimens and significantly correlated with blaNDM and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. CONCLUSIONS: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, blaOXA-23, blaTEM, blaCTX-M, and blaNDM-1 were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Carbapenémicos , beta-Lactamasas , Biopelículas/crecimiento & desarrollo , beta-Lactamasas/genética , Humanos , Pakistán , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Masculino , Estudios Transversales , Adulto , Persona de Mediana Edad , Femenino , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , Adulto Joven , Proteínas Bacterianas/genética , Adolescente
13.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992278

RESUMEN

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Asunto(s)
Antifúngicos , Candida auris , Flavanonas , Factores de Virulencia , Flavanonas/farmacología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Animales , Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candida auris/genética , Pruebas de Sensibilidad Microbiana , Scutellaria baicalensis/química , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Larva/microbiología , Mariposas Nocturnas/microbiología , Biopelículas/efectos de los fármacos , Extractos Vegetales/farmacología , Flavonoides
14.
Nat Commun ; 15(1): 5682, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971854

RESUMEN

Accumulating evidences are challenging the paradigm that methane in surface water primarily stems from the anaerobic transformation of organic matters. Yet, the contribution of oxygenic photosynthetic bacteria, a dominant species in surface water, to methane production remains unclear. Here we show methanogenesis triggered by the interaction between oxygenic photosynthetic bacteria and anaerobic methanogenic archaea. By introducing cyanobacterium Synechocystis PCC6803 and methanogenic archaea Methanosarcina barkeri with the redox cycling of iron, CH4 production was induced in coculture biofilms through both syntrophic methanogenesis (under anoxic conditions in darkness) and abiotic methanogenesis (under oxic conditions in illumination) during the periodic dark-light cycles. We have further demonstrated CH4 production by other model oxygenic photosynthetic bacteria from various phyla, in conjunction with different anaerobic methanogenic archaea exhibiting diverse energy conservation modes, as well as various common Fe-species. These findings have revealed an unexpected link between oxygenic photosynthesis and methanogenesis and would advance our understanding of photosynthetic bacteria's ecological role in the global CH4 cycle. Such light-driven methanogenesis may be widely present in nature.


Asunto(s)
Metano , Fotosíntesis , Synechocystis , Metano/metabolismo , Synechocystis/metabolismo , Oxidación-Reducción , Methanosarcina barkeri/metabolismo , Oxígeno/metabolismo , Biopelículas/crecimiento & desarrollo , Anaerobiosis , Hierro/metabolismo , Bacterias/metabolismo , Bacterias/genética , Luz , Archaea/metabolismo , Archaea/genética
15.
Mycopathologia ; 189(4): 65, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990436

RESUMEN

Candida auris is an emerging multi-drug resistant yeast that can cause life-threatening infections. A recent report clarified the ability of C. auris to form a biofilm with enhanced drug resistance properties in the host skin's deep layers. The formed biofilm may initiate further bloodstream spread and immune escape. Therefore, we propose that secreted chemicals from the biofilm may facilitate fungal pathogenesis. In response to this interaction, the host skin may develop potential defensive mechanisms. Comparative transcriptomics was performed on the host dermal cells in response to indirect interaction with C. auris biofilm through Transwell inserts compared to planktonic cells. Furthermore, the effect of antifungals including caspofungin and fluconazole was studied. The obtained data showed that the dermal cells exhibited different transcriptional responses. Kyoto Encyclopedia of Genes and Genomes and Reactome analyses identified potential defensive responses employed by the dermal cells and potential toxicity induced by C. auris. Additionally, our data indicated that the dominating toxic effect was mediated by ferroptosis; which was validated by qRT-PCR, cytotoxicity assay, and flow cytometry. On the other hand, the viability of C. auris biofilm was enhanced and accompanied by upregulation of MDR1, and KRE6 upon interaction with dermal cells; both genes play significant roles in drug resistance and biofilm maturation, respectively. This study for the first-time shed light on the dominating defensive responses of human dermal cells, microbe colonization site, to C. auris biofilm and its toxic effects. Further, it demonstrates how C. auris biofilm responds to the defensive mechanisms developed by the human dermal cells.


Asunto(s)
Antifúngicos , Biopelículas , Candida auris , Ferroptosis , Perfilación de la Expresión Génica , Humanos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida auris/genética , Candida auris/efectos de los fármacos , Antifúngicos/farmacología , Ferroptosis/efectos de los fármacos , Fluconazol/farmacología , Caspofungina/farmacología , Piel/microbiología , Interacciones Huésped-Patógeno
16.
Helicobacter ; 29(4): e13110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39001634

RESUMEN

BACKGROUND: Antimicrobial-resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin-resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti-Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano-gold emulsion, and curcumin nanoemulsion. METHODS: The antimicrobial activities of the investigated compounds, both individually and in combination with other anti-Helicobacter drugs, were evaluated. Their antibiofilm and anti-virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. RESULTS: We observed high anti-Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values <0.5. The curcumin nanoemulsion was the most active anti-biofilm and anti-virulence compound among the examined substances. The biofilm-correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change <1) post-treatment with curcumin nanoemulsion. On the protein level, the anti-virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. CONCLUSION: The anti-Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub-MIC levels could enhance the anti-Helicobacter activity of azithromycin and exhibit anti-virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.


Asunto(s)
Antibacterianos , Azitromicina , Biopelículas , Curcumina , Infecciones por Helicobacter , Simulación del Acoplamiento Molecular , Azitromicina/farmacología , Azitromicina/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Biopelículas/efectos de los fármacos , Curcumina/farmacología , Curcumina/química , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico , Productos Biológicos/farmacología , Productos Biológicos/química , Virulencia/efectos de los fármacos , Femenino
17.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000290

RESUMEN

The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.


Asunto(s)
Antibacterianos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Animales , Carbón Orgánico/química , Carbón Orgánico/farmacología , Biopelículas/efectos de los fármacos
18.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000327

RESUMEN

Microbial biofilms pose severe problems in the medical field and food industry, as they are the cause of many serious infections and food-borne diseases. The extreme biofilms' resistance to conventional anti-microbial treatments presents a major challenge to their elimination. In this study, the difference in resistance between Staphylococcus aureus DSMZ 12463 biofilms, biofilm-detached cells, and planktonic cells against microcapsules containing carvacrol was assessed. The antimicrobial/antibiofilm activity of low pH disinfection medium containing the microencapsulated carvacrol was also studied. In addition, the effect of low pH on the in vitro carvacrol release from microcapsules was investigated. The minimum inhibitory concentration of microencapsulated carvacrol was 0.625 mg mL-1. The results showed that biofilms exhibited greater resistance to microencapsulated carvacrol than the biofilm-detached cells and planktonic cells. Low pH treatment alone, by hydrochloric acid addition, showed no bactericidal effect on any of the three states of S. aureus strain. However, microencapsulated carvacrol was able to significantly reduce the planktonic cells and biofilm-detached cells below the detection limit (no bacterial counts), and the biofilm by approximatively 3 log CFU mL-1. In addition, results showed that microencapsulated carvacrol combined with low pH treatment reduced biofilm by more than 5 log CFU mL-1. Thus, the use of microencapsulated carvacrol in acidic environment could be a promising approach to combat biofilms from abiotic surfaces.


Asunto(s)
Antibacterianos , Biopelículas , Cimenos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Cimenos/farmacología , Concentración de Iones de Hidrógeno , Antibacterianos/farmacología , Plancton/efectos de los fármacos , Cápsulas , Composición de Medicamentos/métodos , Farmacorresistencia Bacteriana/efectos de los fármacos
19.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(7): 672-680, 2024 Jul 09.
Artículo en Chino | MEDLINE | ID: mdl-38949135

RESUMEN

Objective: To investigate the effects of Porphyromonas gingivalis (Pg) persisters (Ps) on immuno-inflammatory responses in macrophages, and to explore the underlying mechanisms. Methods: Pg cells were cultured to the stationary phase (72 h), and subsequently treated by high concentration of metronidazole at 100 mg/L, amoxicillin at 100 mg/L and the combination of them for different time period, named as metronidazole group, amoxicillin group and (metronidazole+amoxicillin) group. Pg cells without treatment were used as Blank control. The survival profile of PgPs cells was measured by colony-forming unit assay. The living state of PgPs was observed by Live/Dead staining. Then, Pg and metronidazole-treated PgPs (M-PgPs) were used to treat macrophages, named as Pg group and M-PgPs group. Transmission electron microscopy (TEM) was used to observe the bacteria in the macrophages. The expression levels of proinflammatory cytokines in macrophages were determined by real-time fluorescence quantitative PCR and enzyme-linked immunosorbent assay. The location of forkhead box transcription factor 1 (FOXO1) was detected by confocal immunofluorescence microscopy. After inhibiting or enhancing the FOXO1 expressions using inhibitors (Fi) or activators (Fa) respectively, the macrophages were treated with Pg and M-PgPs, divided as Blank group, Pg group, M-PgPs group, Fi group, (Fi+Pg) group, (Fi+M-PgPs) group, Fa group, (Fa+Pg) group and (Fa+M-PgPs) group. Then, the expression pattens of proinflammatory cytokines were assessed. Results: Remarkable number of lived PgPs was observed, both in planktonic culture and Pg biofilms either treated with metronidazole, amoxicillin or both, and those persisters could form new colonies. Pg and M-PgPs were able to enter into the macrophages and the protein expression levels of interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) [Pg group: (2 392±188), (162±29), (5 558±661), (789±155) µg/L; M-PgPs group: (2 415±420), (155±3), (5 732±782), (821±176) µg/L] were significantly upregulated than those in Blank group [(485±140), (21±9), (2 332±87), (77±7) µg/L] (P<0.01). Moreover, Pg and M-PgPs could facilitate the nuclear translocation and accumulation of FOXO1. In addition, the relative mRNA expression levels of FOXO1, B-cell lymphoma 6 and Krüppel-like factor 2 were upregulated when compared to Blank group (P<0.05). Furthermore, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fi+Pg group [(1 081±168), (70±8), (1 976±544), (420±47) µg/L] were remarkably lower than Pg group [(4 411±137), (179±6), (5 161±929), (934±24) µg/L] (P<0.05). Similarly, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fi+M-PgPs group [(1 032±237), (74±10), (1 861±614), (405±32) µg/L] were remarkably lower than M-PgPs group [(4 342±314), (164±17), (4 438±1 374), (957±25) µg/L] (P<0.05). On the contrary, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fa+Pg group [(8 198±1 825), (431±28), (8 919±650), (2 186±301) µg/L] and Fa+M-PgPs group [(8 159±2 627), (475±26), (8 995±653), (2 255±387) µg/L] were significantly higher than Pg group and M-PgPs group, respectively (P<0.05). Conclusions: PgPs are highly tolerant to metronidazole and amoxicillin. The M-PgPs could enhance the immuno-inflammatory responses in macrophages by upregulating the FOXO1 signaling pathway, while this effect exhibits no significant difference with Pg.


Asunto(s)
Biopelículas , Macrófagos , Metronidazol , Porphyromonas gingivalis , Transducción de Señal , Macrófagos/metabolismo , Metronidazol/farmacología , Biopelículas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Amoxicilina/farmacología , Regulación hacia Arriba , Animales , Interleucina-1beta/metabolismo , Ratones , Proteína Forkhead Box O1/metabolismo , Interleucina-8/metabolismo , Inflamación , Humanos
20.
J Photochem Photobiol B ; 257: 112971, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955081

RESUMEN

Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.


Asunto(s)
Biopelículas , Luz , Mastitis Bovina , Nanopartículas , Polímeros , Animales , Bovinos , Nanopartículas/química , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Femenino , Polímeros/química , Polímeros/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porfirinas/química , Porfirinas/farmacología , Staphylococcus/efectos de los fármacos , Staphylococcus/efectos de la radiación , Antibacterianos/farmacología , Antibacterianos/química , Microscopía Electrónica de Rastreo , Fotoquimioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...