Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.665
Filtrar
1.
Physiol Plant ; 176(4): e14432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981735

RESUMEN

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Asunto(s)
Botrytis , Brassica , Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Botrytis/fisiología , Botrytis/patogenicidad , Ciclopentanos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Brassica/microbiología , Brassica/genética , Brassica/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente
2.
World J Microbiol Biotechnol ; 40(9): 258, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954148

RESUMEN

The aim of the present study is to develop a pH-sensing biopolymer film based on the immobilization of red cabbage extract (RCE) within bacterial cellulose (BC) to detect contamination and gamma radiation exposure in cucumbers. The results obtained show a sensitivity to pH changes for RCE in its aqueous form and that incorporated within BC films (RCE-BC), both showed color change correlated to bacterial growth (R2 = 0.91), this was supported with increase in pH values from 2 to 12 (R2 = 0.98). RCE and RCE-BC exposure to gamma radiation (0, 2.5, 5, 10, 15, 20, 25 kGy) resulted in gradual decrease in color that was more evident in RCE aqueous samples. To sense bacterial contamination of cucumbers, the total count was followed at 0, 5, 10 and 15 days in cold storage conditions and was found to reach 9.13 and 5.47 log cfu/mL for non-irradiated and 2 kGy irradiated samples, respectively. The main isolates detected throughout this storage period were identified as Pseudomonas fluorescens, Erwinia sp. Pantoea agglomerans using matrix assisted laser desorption ionization-time of flight-ms (MALDI-TOF-MS). Bacterial growth in stored irradiated cucumbers was detected by color change within 5 and 10 days of storage, after which there was no evident change. This is very useful since contamination within the early days of storage cannot be sensed with the naked eye. This study is the first to highlight utilizing RCE and RCE-BC as eco-friendly pH-sensing indicator films for intelligent food packaging to detect both food contamination and gamma preservation for refrigerator stored cucumbers.


Asunto(s)
Brassica , Celulosa , Cucumis sativus , Rayos gamma , Extractos Vegetales , Brassica/microbiología , Brassica/química , Celulosa/química , Cucumis sativus/microbiología , Cucumis sativus/química , Cucumis sativus/efectos de la radiación , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Microbiología de Alimentos , Bacterias/efectos de la radiación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Embalaje de Alimentos/métodos , Contaminación de Alimentos/análisis , Almacenamiento de Alimentos , Irradiación de Alimentos/métodos , Recuento de Colonia Microbiana
3.
Artículo en Inglés | MEDLINE | ID: mdl-39016536

RESUMEN

A Gram-stain-negative, endospore-forming, rod-shaped, indole-producing bacterial strain, designated YZC6T, was isolated from fermented cabbage. Strain YZC6T grew at 10-37  °C, pH 5.5-8.5, and with up to 2  % (w/v) NaCl. The major cellular fatty acids were C16 : 0 and C18 : 1 cis 11 dimethyl acetal. Phylogenetic analysis of the 16S rRNA gene revealed that strain YZC6T belonged to the genus Lacrimispora and was closely related to Lacrimispora aerotolerans DSM 5434T (98.3  % sequence similarity), Lacrimispora saccharolytica WM1T (98.1  %), and Lacrimispora algidixylanolytica SPL73T (98.1  %). The average nucleotide identity based on blast (below 87.8  %) and digital DNA-DNA hybridization (below 36.1 %) values between the novel isolate and its corresponding relatives showed that strain YZC6T could be readily distinguished from its closely related species. Based on genotypic, phenotypic, and chemotaxonomic data, a novel Lacrimispora species, Lacrimispora brassicae sp. nov., was proposed, with YZC6T as the type strain (=MAFF 212518T=JCM 32810T=DSM 112100T). This study also proposed Clostridium indicum Gundawar et al. 2019 as a later heterotypic synonym of Lacrimispora amygdalina (Parshina et al. 2003) Haas and Blanchard 2020 and Clostridium methoxybenzovorans Mechichi et al. 1999 as a later heterotypic synonym of Lacrimispora indolis (McClung and McCpy 1957) Haas and Blanchard 2020.


Asunto(s)
Técnicas de Tipificación Bacteriana , Brassica , ADN Bacteriano , Ácidos Grasos , Fermentación , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Brassica/microbiología , ADN Bacteriano/genética , Composición de Base , Clostridiales/clasificación , Clostridiales/aislamiento & purificación , Clostridiales/genética , Indoles/metabolismo
4.
J Med Food ; 27(7): 627-635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976324

RESUMEN

Type 2 diabetes (T2D) is a serious health problem, and its prevalence is expected to increase worldwide in the years ahead. Cruciferous vegetables such as Brassica oleracea var. capitata L. (green cabbage) and Raphanus sativus L. (radish) have therapeutic properties that can be used to support the treatment of T2D. This study evaluated the effect of B. oleracea (BAE) and R. sativus (RAE) aqueous extracts on zoometric parameters, glycemic profiles, and pancreas and liver in prediabetic rats induced by a high-sucrose diet (HSD). BAE and RAE were administered to male HSD-induced Wistar rats (n = 35) at 5 and 10 mg/kg doses for 5 weeks. Zoometric and biochemical changes were measured, and then the pancreas and liver histological preparations were analyzed to observe the protective effect. BAE decreased feed intake and weight gain. Both extracts decreased fasting glucose and insulin levels compared with control (not treated), although not significantly (P > .05). The extracts significantly (P < .05) reduced homeostatic model assessment for insulin resistance, homeostasis model assessment of ß-cell function, and glucose intolerance, similar to metformin control. In addition, minor damage occurred in the pancreas and liver. The results indicated that BAE and RAE decreased weight gain, improved glucose regulation, and protected the pancreas and liver in HSD rats. Therefore, they have multiple therapeutical properties and may be helpful in the prevention of T2D.


Asunto(s)
Glucemia , Brassica , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Insulina , Hígado , Extractos Vegetales , Estado Prediabético , Raphanus , Ratas Wistar , Animales , Brassica/química , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Ratas , Estado Prediabético/tratamiento farmacológico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Raphanus/química , Insulina/sangre , Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Humanos , Resistencia a la Insulina , Modelos Animales de Enfermedad
5.
BMC Plant Biol ; 24(1): 674, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004738

RESUMEN

BACKGROUND: Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS: Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION: Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.


Asunto(s)
Antioxidantes , Citocininas , Cinetina , Reguladores del Crecimiento de las Plantas , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Cinetina/farmacología , Antioxidantes/metabolismo , Brassica/efectos de los fármacos , Brassica/metabolismo , Brassica/fisiología , Brassica/crecimiento & desarrollo , Compuestos de Bencilo/farmacología , Purinas , Fotosíntesis/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
Sci Rep ; 14(1): 15794, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982208

RESUMEN

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Asunto(s)
Biofortificación , Brassica , Hidroponía , Yodatos , Yodo , Yodo/metabolismo , Yodo/análisis , Brassica/metabolismo , Brassica/crecimiento & desarrollo , Brassica/efectos de los fármacos , Yodatos/metabolismo , Biomasa , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Yoduro de Potasio/farmacología , Compuestos de Potasio/farmacología , Compuestos de Potasio/metabolismo , Clorofila/metabolismo
7.
Sci Rep ; 14(1): 16555, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019971

RESUMEN

Mechanized biochar field application remains challenging due to biochar's poor flowability and bulk density. Granulation of biochar with fertilizer provides a product ready for application with well-established machinery. However, it's unknown whether granulated biochar-based fertilizers (gBBF) are as effective as co-application of non-granulated biochar with fertilizer. Here, we compared a gBBF with a mineral compound fertilizer (control), and with a non-granulated biochar that was co-applied at a rate of 1.1 t ha-1 with the fertilizer in a white cabbage greenhouse pot trial. Half the pots received heavy rain simulation treatments to investigate nutrient leaching. Crop yields were not significantly increased by biochar without leaching compared to the control. With leaching, cabbage yield increased with gBBF and biochar-co-application by 14% (p > 0.05) and 34% (p < 0.05), respectively. Nitrogen leaching was reduced by 26-35% with both biochar amendments. Biochar significantly reduced potassium, magnesium, and sulfur leaching. Most nitrogen associated with gBBF was released during the trial and the granulated biochar regained its microporosity. Enriching fertilizers with biochar by granulation or co-application can improve crop yields and decrease nutrient leaching. While the gBBF yielded less biomass compared to biochar co-application, improved mechanized field application after granulation could facilitate the implementation of biochar application in agriculture.


Asunto(s)
Carbón Orgánico , Productos Agrícolas , Fertilizantes , Minerales , Carbón Orgánico/química , Productos Agrícolas/crecimiento & desarrollo , Minerales/química , Nitrógeno/química , Brassica/crecimiento & desarrollo , Suelo/química , Nutrientes , Agricultura/métodos , Magnesio/química
8.
Planta ; 260(2): 49, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985323

RESUMEN

MAIN CONCLUSION: We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Salino , Brassica/genética , Brassica/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Familia de Multigenes , Filogenia , Genoma de Planta/genética , Perfilación de la Expresión Génica
9.
Planta ; 260(2): 50, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990341

RESUMEN

MAIN CONCLUSION: BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.


Asunto(s)
Etilenos , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Brassica/genética , Brassica/fisiología , Brassica/metabolismo , Brassica/crecimiento & desarrollo , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo
10.
J Agric Food Chem ; 72(28): 16032-16044, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38975781

RESUMEN

Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Glucosinolatos , Proteínas de Plantas , Transcriptoma , Glucosinolatos/metabolismo , Glucosinolatos/genética , Brassica/genética , Brassica/química , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/química
11.
PLoS One ; 19(6): e0304005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935598

RESUMEN

Iodine deficiency in the diet globally continues to be a cause of many diseases and disabilities. Kale is a vegetable that has health-promoting potential because of many nutrients and bioactive compounds (ascorbic acid, carotenoids, glucosinolates and phenolic compounds). Brassica vegetables, including kale, have been strongly recommended as dietary adjuvants for improving health. The nutrient and health-promoting compounds in kale are significantly affected by thermal treatments. Changes in phytochemicals upon such activities may result from two contrary phenomena: breakdown of nutrients and bioactive compounds and a matrix softening effect, which increases the extractability of phytochemicals, which may be especially significant in the case of iodine-fortified kale. This study investigated changes of basic composition, iodine, vitamin C, total carotenoids and polyphenols contents as well as antioxidant activity caused by steaming, blanching and boiling processes in the levels of two cultivars of kale (green and red) non-biofortified and biofortified via the application to nutrient solutions in hydroponic of two iodoquinolines [8-hydroxy-7-iodo-5-quinolinesulfonic acid (8-OH-7-I-5QSA) and 5-chloro-7-iodo-8-quinoline (5-Cl-7-I-8-Q)] and KIO3. Thermal processes generally significantly reduced the content of the components in question and the antioxidant activity of kale, regardless of cultivar and enrichment. It was observed that the red cultivar of kale had a greater ability to accumulate and reduce iodine losses during the culinary processes. 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a protective effect against the treatments used, compared to other enrichments, thus contributing to the preservation of high iodine content.


Asunto(s)
Antioxidantes , Brassica , Calor , Yodo , Brassica/química , Brassica/metabolismo , Yodo/análisis , Antioxidantes/análisis , Antioxidantes/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/metabolismo , Polifenoles/análisis , Alimentos Fortificados/análisis
12.
Plant Sci ; 346: 112154, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38879178

RESUMEN

Chinese cabbage is a cross-pollinated crop with significant heterosis, and male sterile lines are an important way to produce hybrid seeds. In this study, a male sterile mutant msm0795 was identified in an EMS-mutagenized population of Chinese cabbage. Cytological observations revealed that the microspores failed to separate after the tetrad stage, and thus developed into abnormal pollen grains, resulting in anther abortion. MutMap combined with Kompetitive Allele Specific PCR genotyping showed that BraA01g011280.3.5 C was identified as the candidate gene, which encodes polygalacturonase QRT3 and plays a direct role in the degradation of pollen mother cell wall during microspore development, named BrQRT3. Subcellular localization and expression analyses demonstrated that BrQRT3 was localized in the cell membrane and was ubiquitously expressed in roots, stems, leaves, flower buds, and flowers, but the expression of BrQRT3 was gradually suppressed with the anther development. Ectopic expression confirmed that over-expression of BrQRT3 in qrt3 background Arabidopsis mutant can rescue the pollen defects caused by loss of AtQRT3 function. It is the first time to achieve a male sterile mutant caused by the mutation of BrQRT3 in Chinese cabbage. These findings contribute to elucidate the mechanism of BrQRT3 in regulating stamen development of Chinese cabbage.


Asunto(s)
Brassica , Infertilidad Vegetal , Proteínas de Plantas , Polen , Brassica/genética , Brassica/crecimiento & desarrollo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Genes de Plantas , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Mutación , Flores/genética , Flores/crecimiento & desarrollo
13.
Nutrients ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931232

RESUMEN

Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.


Asunto(s)
Homeostasis , Isotiocianatos , Sulfóxidos , Isotiocianatos/farmacología , Isotiocianatos/administración & dosificación , Humanos , Homeostasis/efectos de los fármacos , Animales , Glucosa/metabolismo , Brassica/química , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Disponibilidad Biológica
14.
Genes (Basel) ; 15(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927604

RESUMEN

Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.


Asunto(s)
Brassica , Sistemas CRISPR-Cas , Edición Génica , Plantas Modificadas Genéticamente , Brassica/genética , Edición Génica/métodos , Plantas Modificadas Genéticamente/genética
15.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928029

RESUMEN

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Asunto(s)
Brassica , Ácidos Erucicos , Ésteres , Ingeniería Metabólica , Plantas Modificadas Genéticamente , Semillas , Ceras , Ácidos Erucicos/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ceras/metabolismo , Ésteres/metabolismo , Semillas/genética , Semillas/metabolismo , Brassica/genética , Brassica/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Photochem Photobiol B ; 257: 112959, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943712

RESUMEN

The spectral composition of some light-emitting diodes (LEDs) reportedly results in higher crop yield, prevents wilting, and reduces thermal damage to plants. The use of LEDs for postharvest storage and shelf-life extension has been limited, but the potential of this technology will allow for greater applications in horticulture and the food industry. In this experiment, 'Winterbor' kale (Brassica oleracea) and 'Melody' spinach (Spinacia oleracea) plants were measured for the light compensation point and stomatal response under 14 different wavelengths of light ranging from 405 to 661 nm. Data collected from these measurements were used to select two different wavelengths of LEDs and determine the proper irradiance levels for an LED irradiance storage test on spinach and kale. Treatments comprising blue, red, and amber lights were effective at increasing the stomatal opening, while the green light resulted in reduced stomatal opening. For spinach, the light response curve showed that light compensation points at 500 nm and 560 nm were 65.3 and 64.7 µmol m-2 s-1, respectively. For kale, the light compensation points at 500 nm and 560 nm were 50.8 and 44.1 µmol m-2 s-1, respectively. For the storage test experiment at room temperature, kale and spinach were stored under four different treatments: dark treatment (control), standard white fluorescent light, 500 nm, and 560 nm LED wavelengths. For spinach, the moisture content was 70.1% at 560 nm and 53.7% for dark, moisture losses of 41.5% under the 560-nm treatment and 52.0% for the dark treatment. The fresh basis moisture content was 74.6% at 560 nm and 59.3% in the dark. Moisture loss under the 560 nm treatment was 39.6% while the dark treatment had a 54.0% moisture loss. A visual assessment scale was monitored, 560 nm resulted in the top visual quality for kale compared to the other treatments with the lowest visual quality under the dark treatment at day 4. For spinach, the visual quality for 560 nm treatment was statistically the standard white fluorescent light and 500 nm, with poor-quality product occurring by day 4 and the lowest-quality product occurring at day 5. The LED treatments improved the shelf life of spinach and kale, likely as a result of stomatal aperture closure, photosynthetic rate near the light compensation point and stability of the atmospheric moisture content. This study provides valuable information on the extension of the shelf life of leafy greens during storage. Reducing fresh produce waste in grocery stores will increase revenue, thereby benefiting the Canadian economy while providing social and environmental benefits that entail increased food security and reduced food waste.


Asunto(s)
Brassica , Luz , Estomas de Plantas , Spinacia oleracea , Spinacia oleracea/efectos de la radiación , Spinacia oleracea/fisiología , Spinacia oleracea/metabolismo , Brassica/efectos de la radiación , Brassica/fisiología , Estomas de Plantas/efectos de la radiación , Estomas de Plantas/fisiología , Almacenamiento de Alimentos
17.
Chem Res Toxicol ; 37(7): 1210-1217, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38855932

RESUMEN

Tellurium (Te) is a chalcogen element like sulfur and selenium. Although it is unclear whether Te is an essential nutrient in organisms, unique Te metabolic pathways have been uncovered. We have previously reported that an unknown Te metabolite (UKTe) was observed in plants exposed to tellurate, a highly toxic Te oxyanion, by liquid chromatography-inductively coupled plasma mass spectrometer (LC-ICP-MS). In the present study, we detected UKTe in tellurate-exposed broccoli (Brassica oleracea var. italica) by LC-ICP-MS and identified it as gluconic acid-3-tellurate (GA-3Te) using electrospray ionization mass spectrometer with quadrupole-Orbitrap detector and tandem MS analysis, the high-sensitivity and high-resolution mass spectrometry for organic compounds. We also found that GA-3Te was produced from one gluconic acid and one tellurate molecule by direct complexation in an aqueous solution. GA-3Te was significantly less toxic than tellurate on plant growth. This study is the first to identify the Te metabolite GA-3Te in plants and will contribute to the investigation of tellurate detoxification pathways. Moreover, gluconic acid, a natural and biodegradable organic compound, is expected to be applicable to eco-friendly remediation strategies for tellurate contamination.


Asunto(s)
Brassica , Telurio , Brassica/metabolismo , Brassica/química , Telurio/metabolismo , Telurio/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas , Espectrometría de Masas en Tándem , Gluconatos/metabolismo , Gluconatos/química , Estructura Molecular
18.
Ecotoxicol Environ Saf ; 281: 116601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896905

RESUMEN

In this study, a novel sulfur/zinc co-doped biochar (SZ-BC) stabilizer was successfully developed for the remediation of mercury-contaminated soil. Results from SEM, TEM, FTIR and XRD revealed that biochar (BC) was successfully modified by sulfur and zinc. In the batch adsorption experiments, the sulfur-zinc co-pyrolysis biochar displayed excellent Hg(II) adsorption performance, with the maximum adsorption capacity of SZ-BC (261.074 mg/g) being approximately 16.5 times that of BC (15.855 mg/g). Laboratory-scale static incubation, column leaching, and plant pot experiments were conducted using biochar-based materials. At an additional dosage of 5 % mass ratio, the SZ-BC exhibits the most effective stabilization of mercury in soil, leading to a significant reduction in leaching loss compared to the control group (CK) by 51.30 %. Following 4 weeks of incubation and 2 weeks of leaching with SZ-BC, the residual mercury in the soil increased by 27.84 %. As a result, potential ecological risk index of mercury decreased by 92 % compared to the CK group. In the pot experiment, SZ-BC significantly enhanced the growth of Chinese cabbage, with biomass and root dry weight reaching 3.20 and 2.80 times that of the CK group, respectively. Additionally, the Translocation Factor (TF) and Bioconcentration Factor (BF) were reduced by 44.86 % and 74.43 %, respectively, in the SZ-BC group compared to the CK group. Moreover, SZ-BC can effectively improve enzyme activities and increase microbial communities in mercury-contaminated soils. The mechanisms of adsorption and stabilization were elucidated through electrostatic adsorption, ion exchange, surface complexation, and precipitation. These findings provide a potentially effective material for stabilizing soils contaminated with mercury.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Mercurio , Contaminantes del Suelo , Azufre , Zinc , Carbón Orgánico/química , Mercurio/química , Contaminantes del Suelo/química , Zinc/química , Restauración y Remediación Ambiental/métodos , Adsorción , Azufre/química , Suelo/química , Brassica/química , Biodegradación Ambiental
19.
Plant Physiol Biochem ; 213: 108854, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901228

RESUMEN

The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Semillas , Factores de Transcripción , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo
20.
Plant Physiol Biochem ; 213: 108867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936069

RESUMEN

Understanding the heavy metals (HMs) tolerance mechanism is crucial for improving plant growth in metal-contaminated soil. In order to evaluate the lead (Pb) tolerance mechanism in Brassica species, a comparative proteomic study was used. Thirteen-day-old seedlings of B. juncea and B. napus were treated with different Pb(NO3)2 concentrations at 0, 3, 30, and 300 mg/L. Under 300 mg/L Pb(NO3)2 concentration, B. napus growth was significantly decreased, while B. juncea maintained normal growth similar to the control. The Pb accumulation was also higher in B. napus root and shoot compared to B. juncea. Gel-free proteomic analysis of roots revealed a total of 68 and 37 differentially abundant proteins (DAPs) in B. juncea and B. napus-specifically, after 300 mg/L Pb exposure. The majority of these proteins are associated with protein degradation, cellular respiration, and enzyme classification. The upregulated RPT2 and tetrapyrrole biosynthesis pathway-associated proteins maintain the cellular homeostasis and photosynthetic rate in B. juncea. Among the 55 common DAPs, S-adenosyl methionine and TCA cycle proteins were upregulated in B. juncea and down-regulated in B. napus after Pb exposure. Furthermore, higher oxidative stress also reduced the antioxidant enzyme activity in B. napus. The current finding suggests that B. juncea is more Pb tolerant than B. napus, possibly due to the upregulation of proteins involved in protein recycling, degradation, and tetrapyrrole biosynthesis pathway.


Asunto(s)
Plomo , Proteínas de Plantas , Proteómica , Tetrapirroles , Plomo/toxicidad , Plomo/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Tetrapirroles/metabolismo , Tetrapirroles/biosíntesis , Planta de la Mostaza/metabolismo , Planta de la Mostaza/efectos de los fármacos , Planta de la Mostaza/genética , Brassica/metabolismo , Brassica/efectos de los fármacos , Brassica/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...