Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 532(4): 541-547, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32896380

RESUMEN

The proper development of the cerebral cortex is essential for brain formation and functioning. O-GlcNAcylation, an important posttranslational modification, regulates the pathways critical for neuronal health and the survival of the cerebral cortex in neurodegenerative diseases. However, the role of O-GlcNAcylation in regulating cerebral cortical development at the embryonic and early postnatal (0-21 days) stages is still largely unknown. Here we report that the selective deletion of O-GlcNAc transferase (OGT) in neural stem cells (NSCs) in mice led to a series of severe brain developmental deficits, including dramatic shrinkage of cortical and hippocampal histoarchitecture, widespread neuronal apoptosis, decrease in cell proliferation, induction of endoplasmic reticulum (ER) stress, and inhibition of neuronal dendritic and axonal differentiation. The pathology of corticogenesis deficits caused by OGT deletion may largely rely on complicated biological processes, such as proliferation, apoptosis and differentiation. Our results suggest that dysfunctional O-GlcNAcylation in NSCs may be an important contributor to neurodevelopmental diseases.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , N-Acetilglucosaminiltransferasas/fisiología , Células-Madre Neurales/enzimología , Animales , Apoptosis , Axones/ultraestructura , Corteza Cerebral/anatomía & histología , Corteza Cerebral/embriología , Corteza Cerebral/enzimología , Dendritas/ultraestructura , Homólogo 4 de la Proteína Discs Large/metabolismo , Estrés del Retículo Endoplásmico , Masculino , Ratones Noqueados , Morfogénesis , Células Madre Multipotentes/enzimología , N-Acetilglucosaminiltransferasas/genética , Neuronas/citología , Neuronas/metabolismo
2.
Methods Mol Biol ; 2045: 93-105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020633

RESUMEN

Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-ßgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/metabolismo , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Senescencia Celular/genética , Citocinas/metabolismo , Daño del ADN , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/metabolismo , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/fisiología , Células Madre Mesenquimatosas/efectos de la radiación , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/fisiología , Células Madre Multipotentes/efectos de la radiación , Fenotipo , Transducción de Señal/genética , Telómero/genética , Telómero/metabolismo , Flujo de Trabajo , beta-Galactosidasa/metabolismo
3.
J Cell Physiol ; 233(2): 1752-1762, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28681925

RESUMEN

Wnt5a, a non-canonical Wnt protein, is known to play important roles in several cell functions. However, little is known about the effects of Wnt5a on osteoblastic differentiation of periodontal ligament (PDL) cells. Here, we examined the effects of Wnt5a on osteoblastic differentiation and associated intracellular signaling in human PDL stem/progenitor cells (HPDLSCs). We found that Wnt5a suppressed expression of bone-related genes (ALP, BSP, and Osterix) and alizarin red-positive mineralized nodule formation in HPDLSCs under osteogenic conditions. Immunohistochemical analysis revealed that a Wnt5a-related receptor, receptor tyrosine kinase-like orphan receptor 2 (Ror2), was expressed in rat PDL tissue. Interestingly, knockdown of Ror2 by siRNA inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Moreover, Western blotting analysis showed that phosphorylation of the intracellular signaling molecule, c-Jun N-terminal kinase (JNK) was upregulated in HPDLSCs cultured in osteoblast induction medium with Wnt5a, but knockdown of Ror2 by siRNA downregulated the phosphorylation of JNK. We also examined the effects of JNK inhibition on Wnt5a-induced suppression of osteoblastic differentiation of HPDLSCs. The JNK inhibitor, SP600125 inhibited the Wnt5a-induced downregulation of bone-related gene expression in HPDLSCs. Additionally, SP600125 inhibited the Wnt5a-induced suppression of the alizarin red-positive reaction in HPDLSCs. These results suggest that Wnt5a suppressed osteoblastic differentiation of HPDLSCs through Ror2/JNK signaling. Non-canonical Wnt signaling, including Wnt5a/Ror2/JNK signaling, may function as a negative regulator of mineralization, preventing the development of non-physiological mineralization in PDL tissue.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células Madre Multipotentes/enzimología , Osteoblastos/enzimología , Osteogénesis , Ligamento Periodontal/enzimología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Células Madre Multipotentes/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Transfección , Vía de Señalización Wnt/efectos de los fármacos
4.
Cell Death Differ ; 24(12): 2101-2116, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28800128

RESUMEN

Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents ⩽10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1-2% of total c-kitpos myocardial cells, when stimulated with TGF-ß/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.


Asunto(s)
Células Madre Adultas/enzimología , Células Madre Multipotentes/enzimología , Miocardio/enzimología , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Células Madre Adultas/citología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Masculino , Ratones , Células Madre Multipotentes/citología , Miocardio/citología , Ratas , Ratas Wistar
5.
Sci Signal ; 8(401): pe3, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26535006

RESUMEN

The phosphoinositide 3-kinase (PI3K) signaling pathway is among the most frequently altered in cancer. Now, two studies show that a mutated oncogenic PI3Kα, commonly found in breast cancer, leads to dedifferentiation or destabilization of luminal and basal epithelial lineages, which in turn leads to increased cancer cell heterogeneity.


Asunto(s)
Neoplasias de la Mama , Mama/enzimología , Células Epiteliales/enzimología , Células Madre Multipotentes/enzimología , Proteínas de Neoplasias , Células Madre Neoplásicas , Fosfatidilinositol 3-Quinasas , Mama/patología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Células Epiteliales/patología , Femenino , Humanos , Células Madre Multipotentes/patología , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Exp Hematol ; 42(10): 841-51, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25201757

RESUMEN

Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals.


Asunto(s)
Transformación Celular Neoplásica/genética , Células Clonales/patología , Células Madre Hematopoyéticas/patología , Modelos Genéticos , Trastornos Mieloproliferativos/patología , Animales , División Celular/genética , Células Clonales/enzimología , Citocinas/fisiología , Epigénesis Genética/genética , Evolución Molecular , Dosificación de Gen , Técnicas de Sustitución del Gen , Heterogeneidad Genética , Células Madre Hematopoyéticas/enzimología , Humanos , Janus Quinasa 2/genética , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/patología , Mutación Missense , Trastornos Mieloproliferativos/clasificación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Fenotipo , Mutación Puntual , Empalme del ARN/genética , Selección Genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
7.
Taiwan J Obstet Gynecol ; 53(2): 187-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25017264

RESUMEN

OBJECTIVE: Stem cells offer great potential for clinical therapeutic use because of their ability to rejuvenate and to differentiate into numerous types of cells. We isolated multipotent cells from the human term placenta that were capable of differentiation into cells of all three germ layers. MATERIALS AND METHODS: We examined the ability of these placenta-derived multipotent cells (PDMCs) to differentiate into osteoblasts (OBs) or OB-like cells. The PDMCs were treated with osteogenic medium (OM) consisting of dexamethasone, ß-glycerol phosphate, and ascorbic acid. At sequential time intervals (0 day, 3 days, 6 days, 9 days, and 12 days) we measured several parameters. These included alkaline phosphatase (ALP) activity, alizarin red staining (ARS) to measure calcium deposition, messenger RNA (mRNA) expressions of osteogenesis-related transcription factor (Cbfa1), and calcium coordination protein (osteocalcin). These variables were used as indicators of PDMC osteodifferentiation. RESULTS: We showed that ALP activity in the early stage of differentiation and calcium deposition were both significantly increased in PDMCs after OM induction. Moreover, the Cbfa1 and osteocalcin gene expressions were upregulated. The results suggested that OM induced an osteodifferentiation potential in PDMCs. CONCLUSION: PDMC-derived osteocytes provide a useful model to evaluate the mechanisms of key biomolecules and bioengineering processes.


Asunto(s)
Diferenciación Celular , Células Madre Multipotentes/fisiología , Osteogénesis , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Expresión Génica , Humanos , Células Madre Multipotentes/enzimología , Osteocalcina/genética , Osteogénesis/genética , Placenta , Embarazo , ARN Mensajero/metabolismo , Regulación hacia Arriba
8.
J Clin Invest ; 124(8): 3551-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24960165

RESUMEN

Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.


Asunto(s)
Hematopoyesis/fisiología , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Síndrome Rothmund-Thomson/enzimología , Síndrome Rothmund-Thomson/genética , Animales , Apoptosis , Trasplante de Médula Ósea , Daño del ADN , Replicación del ADN , Modelos Animales de Enfermedad , Inestabilidad Genómica , Hematopoyesis/genética , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/patología , Mutación , Fenotipo , RecQ Helicasas/deficiencia
9.
Nat Commun ; 4: 1836, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673621

RESUMEN

Peptidylarginine deiminase 4 (PAD4) functions as a transcriptional coregulator by catalyzing the conversion of histone H3 arginine residues to citrulline residues. Although the high level of PAD4 expression in bone marrow cells suggests its involvement in haematopoiesis, its precise contribution remains unclear. Here we show that PAD4, which is highly expressed in lineage(-) Sca-1(+) c-Kit(+) (LSK) cells of mouse bone marrow compared with other progenitor cells, controls c-myc expression by catalyzing the citrullination of histone H3 on its promoter. Furthermore, PAD4 is associated with lymphoid enhancer-binding factor 1 and histone deacetylase 1 at the upstream region of the c-myc gene. Supporting these findings, LSK cells, especially multipotent progenitors, in PAD4-deficient mice show increased proliferation in a cell-autonomous fashion compared with those in wild-type mice. Together, our results strongly suggest that PAD4 regulates the proliferation of multipotent progenitors in the bone marrow by controlling c-myc expression.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Hidrolasas/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/enzimología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Recuento de Células , Núcleo Celular/enzimología , Proliferación Celular , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Hidrolasas/deficiencia , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Arginina Deiminasa Proteína-Tipo 4 , Proteínas Proto-Oncogénicas c-myc/genética
10.
Biomaterials ; 34(13): 3223-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23410680

RESUMEN

Current advances in stem cell biology have brought much hope for therapy of neuro-degenerative diseases. However, neural stem cells (NSCs) are rare adult stem cells, and the use of non-NSCs requires efficient and high-yielding lineage-specific differentiation prior to transplantation for efficacy. We report on the efficient differentiation of placental-derived multipotent cells (PDMCs) into a neural phenotype with use of Y-27632, a clinically compliant small molecular inhibitor of Rho kinase (ROCK) which is a major mediator of cytoskeleton dynamics. Y-27632 does not induce differentiation of PDMC toward the mesodermal lineages of adipogenesis and osteogenesis, but rather a neural-like morphology, with rapid development of cell extensions and processes within 24 h. Compared with conventional neurogenic differentiation agents, Y-27632 induces a higher percentage of neural-like cells in PDMCs without arresting proliferation or cell cycle dynamics. Y-27632-treated PDMCs express several neural lineage genes at the RNA and protein level, including nestin, MAP2, and GFAP. The effect of the ROCK inhibitor is cell-specific to PDMCs, and is mainly mediated through the ROCK2 isoform and its downstream target, myosin II. Our data suggest that ROCK inhibition and cytoskeletal rearrangement may allow for induction of a neural phenotype in PDMCs without compromising cell survival.


Asunto(s)
Amidas/farmacología , Células Madre Multipotentes/citología , Células Madre Multipotentes/enzimología , Neuronas/citología , Placenta/citología , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Forma de la Célula/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células Madre Multipotentes/efectos de los fármacos , Miosina Tipo II/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Fenotipo , Embarazo , Quinasas Asociadas a rho/metabolismo
11.
Acta Biomater ; 8(11): 3974-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22796654

RESUMEN

Tissue engineering strategies based on multipotent stem cells (MSCs) hold significant promise for the repair or replacement of damaged smooth muscle tissue. To design scaffolds which specifically induce MSC smooth muscle lineage progression requires a deeper understanding of the relative influence of various microenvironmental signals on myogenesis. For instance, MSC myogenic differentiation has been shown to be promoted by increases in active RhoA and FAK, both of which can be induced via increased cell-substrate stress. Separate studies have demonstrated MSC myogenesis to be enhanced by uniaxial cell alignment. The goal of the present study was to compare the impact of increased peak cell-substrate stresses vs. increased uniaxial cell alignment on MSC myogenic differentiation. To this end, MSC fate decisions were compared within two distinct multicellular "forms". A "stripe" multicellular pattern was designed to induce uniaxial cell alignment. In contrast, a second multicellular pattern was designed with "loops" or curves, which altered cell directionality while simultaneously generating regional peak stresses significantly above that intrinsic to the "stripe" form. As anticipated, the higher peak stress levels of the "loop" pattern were associated with increased fractions of active RhoA and active FAK. In contrast, two markers of early smooth muscle lineage progression, myocardin and SM-α-actin, were significantly elevated in the "stripe" pattern relative to the "loop" pattern. These results indicate that scaffolds which promote uniaxial MSC alignment may be more inductive of myogenic differentiation than those associated with increased peak, cell-substrate stress but in which cell directionality varies.


Asunto(s)
Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Desarrollo de Músculos , Estrés Mecánico , Actinas/genética , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Linaje de la Célula , Módulo de Elasticidad , Ensayo de Inmunoadsorción Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratones , Células Madre Multipotentes/enzimología , Células 3T3 NIH , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Biochem Biophys Res Commun ; 422(1): 121-7, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22564728

RESUMEN

Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.


Asunto(s)
Células Madre Adultas/citología , Células de la Médula Ósea/citología , Senescencia Celular , Células Madre Multipotentes/citología , Complejo de la Endopetidasa Proteasomal/fisiología , Células del Estroma/citología , Células Madre Adultas/enzimología , Células de la Médula Ósea/enzimología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Leupeptinas/farmacología , Células Madre Multipotentes/enzimología , Inhibidores de Proteasoma , Células del Estroma/enzimología
13.
J Cell Sci ; 125(Pt 2): 295-309, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22331353

RESUMEN

Adult neural stem cells (NSCs) reside in the subventricular zone (SVZ) and produce neurons throughout life. Although their regenerative potential has kindled much interest, few factors regulating NSCs in vivo are known. Among these is the histone acetyltransferase querkopf (QKF, also known as MYST4, MORF, KAT6B), which is strongly expressed in a small subset of cells in the neurogenic subventricular zone. However, the relationship between Qkf gene expression and the hierarchical levels within the neurogenic lineage is currently unknown. We show here that the 10% of SVZ cells with the highest Qkf expression possess the defining NSC characteristics of multipotency and self-renewal and express markers previously shown to enrich for NSCs. A fraction of cells expressing Qkf at medium to high levels is enriched for multipotent progenitor cells with limited self-renewal, followed by a population containing migrating neuroblasts. Cells low in Qkf promoter activity are predominantly ependymal cells. In addition, we show that mice deficient for Bmi1, a central regulator of NSC self-renewal, show an age-dependent decrease in the strongest Qkf-expressing cell population in the SVZ. Our results show a strong relationship between Qkf promoter activity and stem cell characteristics, and a progressive decrease in Qkf gene activity as lineage commitment and differentiation proceed in vivo.


Asunto(s)
Histona Acetiltransferasas/genética , Células Madre Multipotentes/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Biomarcadores/metabolismo , Proliferación Celular , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Histona Acetiltransferasas/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/enzimología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/metabolismo , Proteínas del Tejido Nervioso/análisis , Células-Madre Neurales/enzimología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Complejo Represivo Polycomb 1/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética
14.
Stem Cells Dev ; 21(8): 1287-98, 2012 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21882976

RESUMEN

Conventional human induced pluripotent stem cells (hiPSCs), reprogrammed from somatic cells by induced expression of Oct4, Sox2, Klf4, and c-Myc, are phenotypically different from mouse embryonic stem cells (ESCs). In mice, culture in N2B27 serum-free 2i media (mitogen-activated protein kinase/extracellular signal-regulated kinase and glycogen synthase kinase 3 inhibitors; PD0325901 and CHIR99021) plus leukemia inhibitory factor (LIF) (2i+LIF medium) enriches for germline competent ESCs. Here, we demonstrate that flat-shaped hiPSC colonies can be reprogrammed into bowl-shaped multi-potent stem cells (2i-hiPSCs) by using 2i+LIF medium. Mechanical dissociation of 2i-hiPSC colonies enables stable maintenance for >20 passages. Importantly, gene expression profiling demonstrated that 2i-hiPSCs more closely resemble primitive neural stem cells (PNSCs). Notably, this 2i-induced phenotype was generated from conventional hiPSCs, but not human ESCs (hESCs), thus correlating with the observation of neuroectodermal SOX1-positive colonies in conventional hiPSCs, but not hESCs in 2i+LIF medium. Thus, 2i-hiPSCs, which are nonteratoma forming PNSCs, may represent a safe source of cells for neural research and regenerative medicine.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Medios de Cultivo/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factor Inhibidor de Leucemia/farmacología , Ratones , Modelos Biológicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/enzimología
15.
Bone ; 50(2): 499-509, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21839191

RESUMEN

Multipotent mesenchymal cells (MMCs) differentiate into osteoblasts or adipocytes through RUNX2 and PPARγ2, respectively. Strontium ranelate has been shown to promote osteoblastogenesis and prevent adipogenesis in long-term experiments using MMCs. The present study involved in-vitro and in-vivo investigations of whether Sr might first be an inhibitor of adipogenesis, thus explaining late osteoblastogenesis. It was established in vivo that Sr reduces adipogenesis in mice treated only for 3 weeks with a 6 mmol/kg/day dose of Sr while the trabecular bone volume is increased. In order to decipher molecular mechanisms during inhibition of adipogenesis, we used murine MMCs C3H10T1/2 cultured under adipogenic conditions (AD) and treated Sr of a concentration up to 3 mM. It was shown that early on (day 1), Sr dose-dependently reduced PPARγ2 and CEBPα mRNA without affecting the RUNX2 gene expression whereas it repressed ALP mRNA. Later (day 5), PPARγ2 and CEBPα mRNA remained inhibited by Sr, preventing adipocyte lipid accumulation, while Runx2 and ALP mRNA were increased. Moreover, under the mentioned conditions, Sr was able to quickly induce the Cyclin D1 gene expression, proliferation and fibronectin fibrillogenesis, both involved in the inhibition of adipogenesis. The inhibition of the ERK pathway by U0126 blunted the Sr-induced PPARγ2 repression while restoring the lipid accumulation. These results demonstrated that Sr was capable of rapidly reducing adipogenesis by a selective PPARγ2 repression that can be explained by its ability to promote MMC proliferation.


Asunto(s)
Adipogénesis/efectos de los fármacos , Adiposidad/efectos de los fármacos , Médula Ósea/fisiología , Linaje de la Célula/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Estroncio/farmacología , Adipogénesis/genética , Adiposidad/genética , Animales , Médula Ósea/anatomía & histología , Médula Ósea/diagnóstico por imagen , Médula Ósea/efectos de los fármacos , Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Huesos/efectos de los fármacos , Butadienos/farmacología , Linaje de la Célula/genética , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Ratones , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/enzimología , Nitrilos/farmacología , Tamaño de los Órganos/efectos de los fármacos , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Radiografía , Rosiglitazona , Tiazolidinedionas/farmacología
16.
Cell Transplant ; 20(8): 1221-30, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21176405

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) are bone marrow-derived cells of nonhematopoietic origin with immunoregulatory properties. Although some functions of MSCs have been identified, there are still features that are not explained thus far. The aim of the present study was to identify novel factors involved in MSC-mediated inhibition of T-cell proliferation. We here demonstrate that the surface molecule CD39 is coexpressed in concert with CD73 on murine MSCs catalyzing the generation of adenosine, which can directly act on activated T cells via the adenosine A2A receptor. Blocking of the adenosine pathway either by the A2A receptor antagonist SCH58261 or the specific CD39 inhibitor polyoxotungstate 1 (POM-1) blocked MSC-mediated suppression of T-cell proliferation almost completely. We conclude that CD39/CD73 coexpression is a novel important component of the immunoregulatory functions of murine MSCs. Our findings may both be important to improve our understanding of MSC function and for the development of immunomodulatory cellular therapies.


Asunto(s)
Adenosina/biosíntesis , Antígenos CD/metabolismo , Apirasa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Linfocitos T/citología , 5'-Nucleotidasa/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Inmunosupresores/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitógenos/farmacología , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/enzimología , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta/farmacología
17.
Biochem Biophys Res Commun ; 400(1): 27-33, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20691159

RESUMEN

Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. We previously reported that undifferentiated mGS cells are phenotypically similar to embryonic stem cells and that fetal liver kinase 1 (Flk1)(+) mGS cells have a similar potential to differentiate into cardiomyocytes and endothelial cells compared with Flk1(+) embryonic stem cells. Here, we transplanted these Flk1(+) mGS cells into an ischemic heart failure mouse model to evaluate the improvement in cardiac function. Significant increase in left ventricular wall thickness of the infarct area, left ventricular ejection fraction and left ventricular maximum systolic velocity was observed 4weeks after when sorted Flk1(+) mGS cells were transplanted directly into the hearts of the acute ischemic model mice. Although the number of cardiomyocytes derived from Flk1(+) mGS cells were too small to account for the improvement in cardiac function but angiogenesis around ischemic area was enhanced in the Flk1(+) mGS cells transplanted group than the control group and senescence was also remarkably diminished in the early phase of ischemia according to ß-galactosidase staining assay. In conclusion, Flk1(+) mGS cell transplantation can improve the cardiac function of ischemic hearts by promoting angiogenesis and by delaying host cell death via senescence.


Asunto(s)
Células Germinativas/citología , Células Madre Multipotentes/trasplante , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Testículo/citología , Animales , Diferenciación Celular , Senescencia Celular , Modelos Animales de Enfermedad , Células Germinativas/enzimología , Masculino , Ratones , Ratones Endogámicos DBA , Células Madre Multipotentes/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Testículo/enzimología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis
18.
Bioessays ; 32(7): 626-37, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20586054

RESUMEN

Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa-like DEAD-box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N-terminal domain of this gene and how this impacts the association of Vasa with nuage-like perinuclear structures.


Asunto(s)
ARN Helicasas DEAD-box/genética , Células Germinativas/enzimología , Células Madre Multipotentes/enzimología , Animales , ARN Helicasas DEAD-box/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Interferencia de ARN
19.
J Cell Physiol ; 224(1): 178-86, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20232315

RESUMEN

Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation.


Asunto(s)
Células Madre Adultas/enzimología , Células de la Médula Ósea/enzimología , Condrogénesis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Células Madre Multipotentes/enzimología , Células Madre/enzimología , Anciano , Anciano de 80 o más Años , Cartílago/metabolismo , Diferenciación Celular , Células Cultivadas , Condrogénesis/genética , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Fosforilación , Interferencia de ARN , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta3/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(9): 4147-52, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20150512

RESUMEN

Human mesenchymal stem cells (hMSCs) from bone marrow are regarded as putative osteoblast progenitors in vivo and differentiate into osteoblasts in vitro. Positive signaling by the canonical wingless (Wnt) pathway is critical for the differentiation of MSCs into osteoblasts. In contrast, activation of the peroxisome proliferator-activated receptor-gamma (PPARgamma)-mediated pathway results in adipogenesis. We therefore compared the effect of glycogen-synthetase-kinase-3beta (GSK3beta) inhibitors and PPARgamma inhibitors on osteogenesis by hMSCs. Both compounds altered the intracellular distribution of beta-catenin and GSK3beta in a manner consistent with activation of Wnt signaling. With osteogenic supplements, the GSK3beta inhibitor 6-bromo-indirubin-3'-oxime (BIO) and the PPARgamma inhibitor GW9662 (GW) enhanced early osteogenic markers, alkaline phosphatase (ALP), and osteoprotegerin (OPG) by hMSCs and transcriptome analysis demonstrated up-regulation of genes encoding bone-related structural proteins. At higher doses of the inhibitors, ALP levels were attenuated, but dexamethasone-induced biomineralization was accelerated. When hMSCs were pretreated with BIO or GW and implanted into experimentally induced nonself healing calvarial defects, GW treatment substantially increased the capacity of the cells to repair the bone lesion, whereas BIO treatment had no significant effect. Further investigation indicated that unlike GW, BIO induced cell cycle inhibition in vitro. Furthermore, we found that GW treatment significantly reduced expression of chemokines that may exacerbate neutrophil- and macrophage-mediated cell rejection. These data suggest that use of PPARgamma inhibitors during the preparation of hMSCs may enhance the capacity of the cells for osteogenic cytotherapy, whereas adenine analogs such as BIO can adversely affect the viability of hMSC preparations in vitro and in vivo.


Asunto(s)
Células Madre Multipotentes/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Proteínas Wnt/metabolismo , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Indoles/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/metabolismo , Osteoprotegerina/metabolismo , Oximas/farmacología , PPAR gamma/antagonistas & inhibidores , Células del Estroma/enzimología , Células del Estroma/metabolismo , Ingeniería de Tejidos , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...